Source code for shenfun.ultraspherical.bases

r"""
Module for function spaces of ultraspherical type.

The ultraspherical polynomial :math:`Q^{(\alpha)}_k` is here defined as

.. math::

    Q^{(\alpha)}_k = \frac{1}{P^{(\alpha,\alpha)}_k(1)} P^{(\alpha,\alpha)}_k

where :math:`P^{(\alpha,\alpha)}_k` is the regular Jacobi polynomial with two
equal parameters. The scaling with :math:`(P^{(\alpha,\alpha)}_k(1))^{-1}` is
not standard, but it leads to the boundary values

.. math::

    {Q}^{(\alpha)}_k(\pm 1) = (\pm 1)^{k}

The Chebyshev (first and second kind) and Legendre polynomials can be defined as

.. math::

    T_k(x) &= Q^{(-1/2)}_k(x) \\
    U_k(x) &= (k+1)Q^{(1/2)}_k(x) \\
    L_k(x) &= Q^{(0)}_k(x)

"""

import numpy as np
import sympy as sp
from scipy.special import eval_jacobi, roots_jacobi #, gamma
from shenfun.matrixbase import SparseMatrix
from shenfun.spectralbase import getCompositeBase, getBCGeneric, BoundaryConditions
from shenfun.jacobi.recursions import cn, h, alfa
from shenfun.jacobi import JacobiBase

xp = sp.Symbol('x', real=True)
m, n, k = sp.symbols('m,n,k', real=True, integer=True, positive=True)

#pylint: disable=method-hidden,no-else-return,not-callable,abstract-method,no-member,cyclic-import

bases = ['Orthogonal',
         'CompactDirichlet',
         'CompactNeumann',
         'UpperDirichlet',
         'LowerDirichlet',
         'CompactBiharmonic',
         'Generic']
bcbases = ['BCGeneric']
testbases = ['Phi1', 'Phi2', 'Phi3', 'Phi4', 'Phi6']
__all__ = bases + bcbases + testbases


[docs] class Orthogonal(JacobiBase): r"""Function space for regular (orthogonal) ultraspherical polynomials The orthogonal basis is .. math:: Q^{(\alpha)}_k = \frac{1}{P^{(\alpha,\alpha)}_k(1)} P^{(\alpha,\alpha)}_k, \quad k = 0, 1, \ldots, N-1, where :math:`P^{(\alpha,\beta)}_k` is the `Jacobi polynomial <https://en.wikipedia.org/wiki/Jacobi_polynomials>`_. The basis :math:`\{Q^{(\alpha)}_k\}` is orthogonal with weight :math:`(1-x^2)^{\alpha}`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", alpha=0, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): JacobiBase.__init__(self, N, quad=quad, alpha=alpha, beta=alpha, domain=domain, dtype=dtype, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self.gn = cn self.plan(int(N*padding_factor), 0, dtype, {})
[docs] @staticmethod def family(): return 'ultraspherical'
[docs] def get_orthogonal(self, **kwargs): d = dict(quad=self.quad, domain=self.domain, dtype=self.dtype, alpha=self.alpha, padding_factor=self.padding_factor, dealias_direct=self.dealias_direct, coordinates=self.coors.coordinates) d.update(kwargs) return Orthogonal(self.N, **d)
[docs] def points_and_weights(self, N=None, map_true_domain=False, weighted=True, **kw): if N is None: N = self.shape(False) assert self.quad == "QG" points, weights = roots_jacobi(N, float(self.alpha), float(self.alpha)) if weighted is False: weights = self.unweighted_quadrature_weights() if map_true_domain is True: points = self.map_true_domain(points) return points, weights
[docs] @staticmethod def jacobiQ(x, alpha, N): V = np.zeros((x.shape[0], N)) for i in range(N): V[:, i] = eval_jacobi(i, float(alpha), float(alpha), x) return V
[docs] def derivative_jacobiQ(self, x, alpha, k=1): V = self.jacobiQ(x, alpha+k, self.N) if k > 0: Vc = np.zeros_like(V) for j in range(k, self.N): dj = np.prod(np.array([j+2*alpha+1+i for i in range(k)])) Vc[:, j] = (dj/2**k)*V[:, j-k] V = Vc return V
[docs] def vandermonde(self, x): V = self.jacobiQ(x, self.alpha, self.shape(False)) if self.alpha != 0: #V *= sp.lambdify(n, cn(self.alpha, self.alpha, n))(np.arange(self.N))[None, :] V *= np.array([cn(self.alpha, self.alpha, n).subs(n, i) for i in np.arange(self.N)], dtype=V.dtype)[None, :] return V
@property def is_orthogonal(self): return True
[docs] @staticmethod def short_name(): return 'Q'
[docs] def stencil_matrix(self, N=None): N = self.N if N is None else N return SparseMatrix({0: 1}, (N, N))
[docs] def sympy_stencil(self, i=sp.Symbol('i', integer=True), j=sp.Symbol('j', integer=True)): return sp.KroneckerDelta(i, j)
[docs] def orthogonal_basis_function(self, i=0, x=xp): return cn(self.alpha, self.alpha, i)*sp.jacobi(i, self.alpha, self.alpha, x)
[docs] def L2_norm_sq(self, i): if i == 0: return sp.simplify(h(alfa, alfa, i, 0, cn).subs(i, 0)).subs(alfa, self.alpha) return h(self.alpha, self.alpha, i, 0, cn)
[docs] def l2_norm_sq(self, i=None): if i is None: hh = np.zeros(self.N) hh[:] = sp.lambdify(n, h(self.alpha, self.alpha, n, 0, cn))(np.arange(self.N)) hh[0] = self.L2_norm_sq(0) return hh return self.L2_norm_sq(i)
[docs] def evaluate_basis(self, x, i=0, output_array=None): x = np.atleast_1d(x) if output_array is None: output_array = np.zeros(x.shape) output_array = eval_jacobi(i, float(self.alpha), float(self.alpha), x, out=output_array) if self.alpha != 0: output_array *= cn(self.alpha, self.alpha, i).n() return output_array
[docs] def evaluate_basis_derivative(self, x=None, i=0, k=0, output_array=None): if x is None: x = self.points_and_weights()[0] x = np.atleast_1d(x) if output_array is None: output_array = np.zeros(x.shape, dtype=self.dtype) dj = np.prod(np.array([i+2*self.alpha+1+j for j in range(k)])) output_array[:] = dj/2**k*eval_jacobi(i-k, float(self.alpha+k), float(self.alpha+k), x) if self.alpha != 0: output_array[:] = output_array*cn(self.alpha, self.alpha, i).n() return output_array
[docs] def evaluate_basis_derivative_all(self, x=None, k=0, argument=0): if x is None: x = self.points_and_weights()[0] V = self.derivative_jacobiQ(x, self.alpha, k) if self.alpha != 0: #V *= sp.lambdify(n, cn(self.alpha, self.alpha, n))(np.arange(self.N))[None, :] V *= np.array([cn(self.alpha, self.alpha, n).subs(n, i) for i in np.arange(self.N)], dtype=V.dtype)[None, :] return V
[docs] def evaluate_basis_all(self, x=None, argument=0): if x is None: x = self.points_and_weights()[0] return self.vandermonde(x)
[docs] def eval(self, x, u, output_array=None): x = np.atleast_1d(x) if output_array is None: output_array = np.zeros(x.shape, dtype=self.forward.output_array.dtype) x = self.map_reference_domain(x) P = self.vandermonde(x) output_array = np.dot(P, u, out=output_array) return output_array
[docs] def get_bc_space(self): if self._bc_space: return self._bc_space self._bc_space = BCGeneric(self.N, bc=self.bcs, alpha=self.alpha, beta=self.alpha, domain=self.domain) return self._bc_space
CompositeBase = getCompositeBase(Orthogonal) BCGeneric = getBCGeneric(CompositeBase)
[docs] class Phi1(CompositeBase): r"""Function space for Dirichlet boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= \frac{(1-x^2)}{h^{(1,\alpha)}_{k+1}} \frac{dQ^{(\alpha)}_{k+1}}{dx}, \, k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= \tfrac{1}{2}(Q^{(\alpha)}_0 - Q^{(\alpha)}_1) \phi_{N-1} &= \tfrac{1}{2}(Q^{(\alpha)}_0 + Q^{(\alpha)}_1) where .. math:: h^{(1,\alpha)}_k&=\int_{-1}^1 \left(\frac{dQ^{(\alpha)}_{k}}{dx}\right)^2 (1-x^2)^{\alpha+1}dx, \\ and the expansion is .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a \text{ and } u(1) = b. The last two bases are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 2-tuple of numbers, optional Boundary conditions at, respectively, x=(-1, 1). alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) #self._stencil = { # 0: sp.simplify(b(alpha, alpha, n+1, n, cn) / h(alpha, alpha, n, 0, cn)), # 2: sp.simplify(b(alpha, alpha, n+1, n+2, cn) / h(alpha, alpha, n+2, 0, cn))} a = alpha self._stencil = { 0: sp.gamma(2*a + n + 2)/(2*2**(2*a)*sp.gamma(a + 1)**2*sp.gamma(n + 2)), 2: -sp.gamma(2*a + n + 2)/(2*2**(2*a)*sp.gamma(a + 1)**2*sp.gamma(n + 2)), }
[docs] @staticmethod def boundary_condition(): return 'Dirichlet'
[docs] @staticmethod def short_name(): return 'P1'
[docs] class Phi2(CompositeBase): r"""Function space for biharmonic equations The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-5` are .. math:: \phi_k &= \frac{(1-x^2)^2}{h^{(2,\alpha)}_{k+2}} \frac{d^2Q^{(\alpha)}_{k+2}}{dx^2}, where .. math:: h^{(2,\alpha)}_k&=\int_{-1}^1 \left(\frac{d^2Q^{(\alpha)}_{k}}{dx^2}\right)^2 (1-x^2)^{\alpha+2}dx, \\ &= \frac{2^{2 \alpha + 1} \cdot \left(2 \alpha + n + 1\right) \left(2 \alpha + n + 2\right) \Gamma^{2}\left(\alpha + n + 1\right)}{\left(2 \alpha + 2 n + 1\right) \Gamma\left(n - 1\right) \Gamma\left(2 \alpha + n + 1\right)}, The 4 boundary basis functions are computed using :func:`.jacobi.findbasis.get_bc_basis`, but they are too messy to print here. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(-1)=b, u(1)=c \text{ and } u'(1) = d. The last 4 basis functions are for boundary conditions and only used if a, b, c or d are different from 0. In one dimension :math:`\hat{u}_{N-4}=a`, :math:`\hat{u}_{N-3}=b`, :math:`\hat{u}_{N-2}=c` and :math:`\hat{u}_{N-1}=d`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 4-tuple of numbers, optional Boundary conditions. alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0, 0, 0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) a = alpha #self._stencil = { # 0: sp.simplify(matpow(b, 2, alpha, alpha, n+2, n, cn) / h(alpha, alpha, n, 0, cn)), # 2: sp.simplify(matpow(b, 2, alpha, alpha, n+2, n+2, cn) / h(alpha, alpha, n+2, 0, cn)), # 4: sp.simplify(matpow(b, 2, alpha, alpha, n+2, n+4, cn) / h(alpha, alpha, n+4, 0, cn))} self._stencil = { 0: sp.gamma(2*a + n + 3)/(2*2**(2*a)*(2*a + 2*n + 3)*sp.gamma(a + 1)**2*sp.gamma(n + 3)), 2: -(2*a + 2*n + 5)*sp.gamma(2*a + n + 3)/(4**a*(2*a + 2*n + 3)*(2*a + 2*n + 7)*sp.gamma(a + 1)**2*sp.gamma(n + 3)), 4: sp.gamma(2*a + n + 3)/(2*2**(2*a)*(2*a + 2*n + 7)*sp.gamma(a + 1)**2*sp.gamma(n + 3)) }
[docs] @staticmethod def boundary_condition(): return 'Biharmonic'
[docs] @staticmethod def short_name(): return 'P2'
[docs] class Phi3(CompositeBase): r"""Function space for 6th order equations The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-7` are .. math:: \phi_k &= \frac{(1-x^2)^3}{h^{(3,\alpha)}_{k+3}} \frac{d^3Q^{(\alpha)}_{k+3}}{dx^3}, \\ where .. math:: h^{(3,\alpha)}_k=\int_{-1}^1 \left(\frac{d^3Q^{(\alpha)}_{k}}{dx^3}\right)^2 (1-x^2)^{\alpha+3}dx, \\ The 6 boundary basis functions are computed using :func:`.jacobi.findbasis.get_bc_basis`, but they are too messy to print here. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(-1)=b, u''(-1)=c, u(1)=ed u'(1)=e, u''(1)=f. The last 6 basis functions are for boundary conditions and only used if there are nonzero boundary conditions. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 6-tuple of numbers, optional Boundary conditions. alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0,)*6, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) #self._stencil = { # 0: sp.simplify(matpow(b, 3, alpha, alpha, n+3, n, cn) / h(alpha, alpha, n, 0, cn)), # 2: sp.simplify(matpow(b, 3, alpha, alpha, n+3, n+2, cn) / h(alpha, alpha, n+2, 0, cn)), # 4: sp.simplify(matpow(b, 3, alpha, alpha, n+3, n+4, cn) / h(alpha, alpha, n+4, 0, cn)), # 6: sp.simplify(matpow(b, 3, alpha, alpha, n+3, n+6, cn) / h(alpha, alpha, n+6, 0, cn))} a = alpha self._stencil = { 0: sp.gamma(2*a + n + 4)/(2*2**(2*a)*(2*a + 2*n + 3)*(2*a + 2*n + 5)*sp.gamma(a + 1)**2*sp.gamma(n + 4)), 2: -3*sp.gamma(2*a + n + 4)/(2*2**(2*a)*(2*a + 2*n + 3)*(2*a + 2*n + 9)*sp.gamma(a + 1)**2*sp.gamma(n + 4)), 4: 3*sp.gamma(2*a + n + 4)/(2*2**(2*a)*(2*a + 2*n + 5)*(2*a + 2*n + 11)*sp.gamma(a + 1)**2*sp.gamma(n + 4)), 6: -sp.gamma(2*a + n + 4)/(2*2**(2*a)*(2*a + 2*n + 9)*(2*a + 2*n + 11)*sp.gamma(a + 1)**2*sp.gamma(n + 4)) }
[docs] @staticmethod def boundary_condition(): return '6th order'
[docs] @staticmethod def short_name(): return 'P3'
[docs] class Phi4(CompositeBase): r"""Function space for 8th order equations The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-9` are .. math:: \phi_k &= \frac{(1-x^2)^4}{h^{(4,\alpha)}_{k+4}} \frac{d^4Q^{(\alpha)}_{k+4}}{dx^4}, \\ where .. math:: h^{(4,\alpha)}_k&=\int_{-1}^1 \left(\frac{d^4Q^{(\alpha)}_{k}}{dx^4}\right)^2 (1-x^2)^{\alpha+4}dx, \\ &=\frac{2^{2 \alpha + 1} \cdot \left(2 \alpha + n + 1\right) \left(2 \alpha + n + 2\right) \left(2 \alpha + n + 3\right) \left(2 \alpha + n + 4\right) \Gamma^{2}\left(\alpha + n + 1\right)}{\left(2 \alpha + 2 n + 1\right) \Gamma\left(n - 3\right) \Gamma\left(2 \alpha + n + 1\right)}, The 8 boundary basis functions are computed using :func:`.jacobi.findbasis.get_bc_basis`, but they are too messy to print here. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(-1)=b, u''(-1)=c, u''''(-1)=d, u(1)=e, u'(1)=f, u''(1)=g, u''''(1)=h. The last 8 basis functions are for boundary conditions and only used if there are nonzero boundary conditions. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 8-tuple of numbers, optional Boundary conditions. alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0,)*8, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) self._stencil_matrix = {} #self._stencil = { # 0: sp.simplify(matpow(b, 4, alpha, alpha, n+4, n, cn) / h(alpha, alpha, n, 0, cn)), # 2: sp.simplify(matpow(b, 4, alpha, alpha, n+4, n+2, cn) / h(alpha, alpha, n+2, 0, cn)), # 4: sp.simplify(matpow(b, 4, alpha, alpha, n+4, n+4, cn) / h(alpha, alpha, n+4, 0, cn)), # 6: sp.simplify(matpow(b, 4, alpha, alpha, n+4, n+6, cn) / h(alpha, alpha, n+6, 0, cn)), # 8: sp.simplify(matpow(b, 4, alpha, alpha, n+4, n+8, cn) / h(alpha, alpha, n+8, 0, cn))} a = alpha self._stencil = { 0: sp.gamma(2*a + n + 5)/(2*2**(2*a)*(2*a + 2*n + 3)*(2*a + 2*n + 5)*(2*a + 2*n + 7)*sp.gamma(a + 1)**2*sp.gamma(n + 5)), 2: -2**(1 - 2*a)*sp.gamma(2*a + n + 5)/((2*a + 2*n + 3)*(2*a + 2*n + 7)*(2*a + 2*n + 11)*sp.gamma(a + 1)**2*sp.gamma(n + 5)), 4: 3*(2*a + 2*n + 9)*sp.gamma(2*a + n + 5)/(4**a*(2*a + 2*n + 5)*(2*a + 2*n + 7)*(2*a + 2*n + 11)*(2*a + 2*n + 13)*sp.gamma(a + 1)**2*sp.gamma(n + 5)), 6: -2**(1 - 2*a)*sp.gamma(2*a + n + 5)/((2*a + 2*n + 7)*(2*a + 2*n + 11)*(2*a + 2*n + 15)*sp.gamma(a + 1)**2*sp.gamma(n + 5)), 8: sp.gamma(2*a + n + 5)/(2*2**(2*a)*(2*a + 2*n + 11)*(2*a + 2*n + 13)*(2*a + 2*n + 15)*sp.gamma(a + 1)**2*sp.gamma(n + 5)) }
[docs] @staticmethod def boundary_condition(): return 'Biharmonic*2'
[docs] @staticmethod def short_name(): return 'P4'
[docs] class Phi6(CompositeBase): r"""Function space for 12th order equations The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-13` are .. math:: \phi_k &= \frac{(1-x^2)^6}{h^{(6,\alpha)}_{k+6}} \frac{d^6 Q^{(\alpha)}_{k+6}}{dx^6}, \\ where .. math:: h^{(6,\alpha)}_k&=\int_{-1}^1 \left(\frac{d^6 Q^{(\alpha)}_{k}}{dx^6}\right)^2 (1-x^2)^{\alpha+6}dx, \\ &=\frac{2^{2 a + 1} n \left(n - 5\right) \left(n - 4\right) \left(n - 3\right) \left(n - 2\right) \left(n - 1\right) \left(2 a + n + 1\right) \left(2 a + n + 2\right) \left(2 a + n + 3\right) \left(2 a + n + 4\right) \left(2 a + n + 5\right) \left(2 a + n + 6\right) \Gamma^{2}\left(a + 1\right) \Gamma\left(n + 1\right)}{\left(2 a + 2 n + 1\right) \Gamma\left(2 a + n + 1\right)}, The 12 boundary basis functions are computed using :func:`.jacobi.findbasis.get_bc_basis`, but they are too messy to print here. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u^{(k)}(-1)&=a_k, u^{(k)}(1)=b_k, k=0, 1, \ldots, 5 The last 12 basis functions are for boundary conditions and only used if there are nonzero boundary conditions. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 12-tuple of numbers, optional Boundary conditions. alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0,)*12, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) self._stencil_matrix = {} #self._stencil = { # 0: sp.simplify(matpow(b, 6, alpha, alpha, n+6, n, cn) / h(alpha, alpha, n, 0, cn)), # 2: sp.simplify(matpow(b, 6, alpha, alpha, n+6, n+2, cn) / h(alpha, alpha, n+2, 0, cn)), # 4: sp.simplify(matpow(b, 6, alpha, alpha, n+6, n+4, cn) / h(alpha, alpha, n+4, 0, cn)), # 6: sp.simplify(matpow(b, 6, alpha, alpha, n+6, n+6, cn) / h(alpha, alpha, n+6, 0, cn)), # 8: sp.simplify(matpow(b, 6, alpha, alpha, n+6, n+8, cn) / h(alpha, alpha, n+8, 0, cn)), # 10: sp.simplify(matpow(b, 6, alpha, alpha, n+6, n+10, cn) / h(alpha, alpha, n+10, 0, cn)), # 12: sp.simplify(matpow(b, 6, alpha, alpha, n+6, n+12, cn) / h(alpha, alpha, n+12, 0, cn))} a = alpha gamma = sp.gamma self._stencil = { 0: gamma(2*a + n + 7)/(2*2**(2*a)*(2*a + 2*n + 3)*(2*a + 2*n + 5)*(2*a + 2*n + 7)*(2*a + 2*n + 9)*(2*a + 2*n + 11)*gamma(a + 1)**2*gamma(n + 7)), 2: -3*gamma(2*a + n + 7)/(4**a*(2*a + 2*n + 3)*(2*a + 2*n + 7)*(2*a + 2*n + 9)*(2*a + 2*n + 11)*(2*a + 2*n + 15)*gamma(a + 1)**2*gamma(n + 7)), 4: 15*gamma(2*a + n + 7)/(2*2**(2*a)*(2*a + 2*n + 5)*(2*a + 2*n + 7)*(2*a + 2*n + 11)*(2*a + 2*n + 15)*(2*a + 2*n + 17)*gamma(a + 1)**2*gamma(n + 7)), 6: -10*(2*a + 2*n + 13)*gamma(2*a + n + 7)/(2**(2*a)*(2*a + 2*n + 7)*(2*a + 2*n + 9)*(2*a + 2*n + 11)*(2*a + 2*n + 15)*(2*a + 2*n + 17)*(2*a + 2*n + 19)*gamma(a + 1)**2*gamma(n + 7)), 8: 15*gamma(2*a + n + 7)/(2*2**(2*a)*(2*a + 2*n + 9)*(2*a + 2*n + 11)*(2*a + 2*n + 15)*(2*a + 2*n + 19)*(2*a + 2*n + 21)*gamma(a + 1)**2*gamma(n + 7)), 10: -3*gamma(2*a + n + 7)/(4**a*(2*a + 2*n + 11)*(2*a + 2*n + 15)*(2*a + 2*n + 17)*(2*a + 2*n + 19)*(2*a + 2*n + 23)*gamma(a + 1)**2*gamma(n + 7)), 12: gamma(2*a + n + 7)/(2*2**(2*a)*(2*a + 2*n + 15)*(2*a + 2*n + 17)*(2*a + 2*n + 19)*(2*a + 2*n + 21)*(2*a + 2*n + 23)*gamma(a + 1)**2*gamma(n + 7)) }
[docs] @staticmethod def boundary_condition(): return '12th order'
[docs] @staticmethod def short_name(): return 'P6'
[docs] class CompactDirichlet(CompositeBase): r"""Function space for Dirichlet boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= Q^{(\alpha)}_k - Q^{(\alpha)}_{k+2} \quad k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= \tfrac{1}{2}(Q^{(\alpha)}_0 - Q^{(\alpha)}_1) \phi_{N-1} &= \tfrac{1}{2}(Q^{(\alpha)}_0 + Q^{(\alpha)}_1) and the expansion is .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a \text{ and } u(1) = b. The last two bases are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 2-tuple of numbers, optional Boundary conditions at, respectively, x=(-1, 1). alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) self._stencil = {0: 1, 2: -1}
[docs] @staticmethod def boundary_condition(): return 'Dirichlet'
[docs] @staticmethod def short_name(): return 'QD'
[docs] class CompactNeumann(CompositeBase): r"""Function space for Neumann boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: n*(-2*a - n - 1)/(2*a*n + 4*a + n**2 + 5*n + 6) \phi_k &= Q^{(\alpha)}_k - \frac{k(2\alpha+k+1)}{2 \alpha k + 4k + k^2 + 5k + 6}Q^{(\alpha)}_{k+2} \quad k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= \tfrac{1}{2}Q^{(\alpha)}_1 - \frac{(\alpha+1)}{2(2\alpha+3) Q^{(\alpha)}_2} \phi_{N-1} &= \tfrac{1}{2}Q^{(\alpha)}_1 + \frac{(\alpha+1)}{2(2\alpha+3) Q^{(\alpha)}_2} and the expansion is .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u'(-1) &= a \text{ and } u'(1) = b. The last two bases are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 2-tuple of numbers, optional Boundary conditions at, respectively, x=(-1, 1). alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): if isinstance(bc, (tuple, list)): bc = BoundaryConditions({'left': {'N': bc[0]}, 'right': {'N': bc[1]}}, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) a = self.alpha self._stencil = {0: 1, 2: n*(-2*a-n-1)/(2*a*n+4*a+n**2+5*n+6)}
[docs] @staticmethod def boundary_condition(): return 'Neumann'
[docs] @staticmethod def short_name(): return 'QN'
[docs] class UpperDirichlet(CompositeBase): r"""Function space with single Dirichlet on upper edge The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= Q^{(\alpha)}_{k} - Q^{(\alpha)}_{k+1}, \, k=0, 1, \ldots, N-2, \\ \phi_{N-1} &= Q^{(\alpha)}_0, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(1) &= a. The last basis function is for boundary condition and only used if a is different from 0. In one dimension :math:`\hat{u}_{N-1}=a`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 2-tuple of (None, number), optional The number is the boundary condition value alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(None, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, alpha=0, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) self._stencil = {0: 1, 1: -1}
[docs] @staticmethod def boundary_condition(): return 'UpperDirichlet'
[docs] @staticmethod def short_name(): return 'UD'
[docs] class LowerDirichlet(CompositeBase): r"""Function space with single Dirichlet on left edge The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= Q^{(\alpha)}_{k} + Q^{(\alpha)}_{k+1}, \, k=0, 1, \ldots, N-2, \\ \phi_{N-1} &= Q^{(\alpha)}_0, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(1) &= a. The last basis function is for boundary condition and only used if a is different from 0. In one dimension :math:`\hat{u}_{N-1}=a`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 2-tuple of (None, number), optional The number is the boundary condition value alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(None, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, alpha=0, **kw): assert quad == "QG" CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) self._stencil = {0: 1, 1: 1}
[docs] @staticmethod def boundary_condition(): return 'UpperDirichlet'
[docs] @staticmethod def short_name(): return 'LD'
[docs] class CompactBiharmonic(CompositeBase): r"""Function space for biharmonic equations The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-5` are .. math:: \phi_k &= \frac{h_n}{b^{(2)}_{n+2,n}} \frac{(1-x^2)^2}{h^{(2,\alpha)}_{k+2}} \frac{d^2Q^{(\alpha)}_{k+2}}{dx^2}, where .. math:: h^{(2,\alpha)}_k&=\int_{-1}^1 \left(\frac{d^2Q^{(\alpha)}_{k}}{dx^2}\right)^2 (1-x^2)^{\alpha+2}dx, \\ &= \frac{2^{2 \alpha + 1} \cdot \left(2 \alpha + n + 1\right) \left(2 \alpha + n + 2\right) \Gamma^{2}\left(\alpha + n + 1\right)}{\left(2 \alpha + 2 n + 1\right) \Gamma\left(n - 1\right) \Gamma\left(2 \alpha + n + 1\right)}, This is :class:`.Phi2` scaled such that the main diagonal of the stencil matrix is unity. The 4 boundary basis functions are computed using :func:`.jacobi.findbasis.get_bc_basis`, but they are too messy to print here. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(-1)=b, u(1)=c \text{ and } u'(1) = d. The last 4 basis functions are for boundary conditions and only used if a, b, c or d are different from 0. In one dimension :math:`\hat{u}_{N-4}=a`, :math:`\hat{u}_{N-3}=b`, :math:`\hat{u}_{N-2}=c` and :math:`\hat{u}_{N-1}=d`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : 4-tuple of numbers, optional Boundary conditions. alpha : number, optional Parameter of the ultraspherical polynomial domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc=(0, 0, 0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, alpha=0, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates) a = alpha #self._stencil = { # 0: 1, # 2: sp.simplify(matpow(b, 2, alpha, alpha, n+2, n+2, cn) / matpow(b, 2, alpha, alpha, n+2, n, cn) * h(alpha, alpha, n, 0, cn) / h(alpha, alpha, n+2, 0, cn)), # 4: sp.simplify(matpow(b, 2, alpha, alpha, n+2, n+4, cn) / matpow(b, 2, alpha, alpha, n+2, n, cn) * h(alpha, alpha, n, 0, cn) / h(alpha, alpha, n+4, 0, cn))} self._stencil = { 0: 1, 2: -(4*a + 4*n + 10)/(2*a + 2*n + 7), 4: (2*a + 2*n + 3)/(2*a + 2*n + 7) }
[docs] @staticmethod def boundary_condition(): return 'Biharmonic'
[docs] @staticmethod def short_name(): return 'C2'
[docs] class Generic(CompositeBase): r"""Function space for space with any boundary conditions Any combination of Dirichlet and Neumann is possible. Parameters ---------- N : int, optional Number of quadrature points quad : str, optional Type of quadrature - QG - Jacobi-Gauss bc : dict, optional The dictionary must have keys 'left' and 'right', to describe boundary conditions on the left and right boundaries, and a list of 2-tuples to specify the condition. Specify Dirichlet on both ends with {'left': {'D': a}, 'right': {'D': b}} for some values `a` and `b`, that will be neglected in the current function. Specify mixed Neumann and Dirichlet as {'left': {'N': a}, 'right': {'N': b}} For both conditions on the right do {'right': {'N': a, 'D': b}} Any combination should be possible, and it should also be possible to use second derivatives `N2`. See :class:`~shenfun.spectralbase.BoundaryConditions`. domain : 2-tuple of numbers, optional The computational domain dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. alpha : number, optional Parameter of the ultraspherical polynomial. padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="QG", bc={}, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, alpha=0, **kw): from shenfun.utilities.findbasis import get_stencil_matrix self._stencil = get_stencil_matrix(bc, 'ultraspherical', alpha, alpha, cn) if not isinstance(bc, BoundaryConditions): bc = BoundaryConditions(bc, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, alpha=alpha, coordinates=coordinates)
[docs] @staticmethod def boundary_condition(): return 'Generic'
[docs] @staticmethod def short_name(): return 'GQ'