Source code for shenfun.optimization.numba.fdma

import numba as nb
import numpy as np
from .la import Solve_axis_2D, Solve_axis_3D, Solve_axis_4D

__all__ = ['FDMA_LU', 'FDMA_Solve', 'FDMA_inner_solve']

[docs] @nb.jit(nopython=True, fastmath=True, cache=True) def FDMA_LU(data): ld = data[0, :-2] d = data[1, :] u1 = data[2, 2:] u2 = data[3, 4:] n = int(d.shape[0]) for i in range(2, n): ld[i-2] = ld[i-2]/d[i-2] d[i] -= ld[i-2]*u1[i-2] if i < n-2: u1[i] -= ld[i-2]*u2[i-2]
[docs] def FDMA_Solve(x, data, axis=0): n = x.ndim if n == 1: FDMA_inner_solve(x, data) elif n == 2: Solve_axis_2D(data, x, FDMA_inner_solve, axis) elif n == 3: Solve_axis_3D(data, x, FDMA_inner_solve, axis) elif n == 4: Solve_axis_4D(data, x, FDMA_inner_solve, axis) else: if axis > 0: x = np.moveaxis(x, axis, 0) FDMA_inner_solve(x, data) if axis > 0: x = np.moveaxis(x, 0, axis)
[docs] @nb.njit def FDMA_inner_solve(u, data): ld = data[0, :-2] d = data[1, :] u1 = data[2, 2:] u2 = data[3, 4:] n = d.shape[0] for i in range(2, n): u[i] -= ld[i-2]*u[i-2] u[n-1] = u[n-1]/d[n-1] u[n-2] = u[n-2]/d[n-2] u[n-3] = (u[n-3] - u1[n-3]*u[n-1])/d[n-3] u[n-4] = (u[n-4] - u1[n-4]*u[n-2])/d[n-4] for i in range(n - 5, -1, -1): u[i] = (u[i] - u1[i]*u[i+2] - u2[i]*u[i+4])/d[i]