Source code for shenfun.legendre.bases

r"""
Module for defining function spaces in the Legendre family.

A function is approximated in the Legendre basis as

..  math::

    u(x) = \sum_{i=0}^{N-1} \hat{u}_i L_i(x)

where :math:`L_i(x)` is the i'th Legendre polynomial of the first kind.
The Legendre polynomials are orthogonal with weight :math:`\omega=1`

.. math::

    \int_{-1}^1 L_i L_k dx = \frac{2}{2k+1} \delta_{ki}.

All other bases defined in this module are combinations of :math:`L_i`'s.
For example, a Dirichlet basis is

.. math::

    \phi_i = L_i - L_{i+2}

The basis is implemented using a stencil matrix :math:`K \in \mathbb{R}^{N-2 \times N}`,
such that

.. math::

    \boldsymbol{\phi} = K \boldsymbol{L},

where :math:`\boldsymbol{\phi}=(\phi_0, \phi_1, \ldots, \phi_{N-3})` and
:math:`\boldsymbol{L}=(L_0, L_1, \ldots, L_{N-1})`. For the Dirichlet basis
:math:`K = (\delta_{i, j} - \delta_{i+2, j})_{i,j=0}^{N-2, N}`.

The stencil matrix is used to transfer any composite basis back and forth
to the orthogonal basis.

"""

from __future__ import division
import sympy as sp
import numpy as np
from numpy.polynomial import legendre as leg
from scipy.special import eval_legendre
from mpi4py_fft import fftw
from shenfun.config import config
from shenfun.spectralbase import Transform, getCompositeBase, getBCGeneric, \
    BoundaryConditions, islicedict, slicedict
from shenfun.matrixbase import SparseMatrix
from shenfun.utilities import n
from shenfun.jacobi import JacobiBase
from .lobatto import legendre_lobatto_nodes_and_weights


bases = ['Orthogonal',
         'ShenDirichlet',
         'ShenNeumann',
         'ShenBiharmonic',
         'ShenBiPolar',
         'LowerDirichlet',
         'NeumannDirichlet',
         'DirichletNeumann',
         'UpperDirichlet',
         'UpperDirichletNeumann',
         'BeamFixedFree',
         'Generic']
bcbases = ['BCGeneric']
testbases = ['Phi1', 'Phi2', 'Phi3', 'Phi4', 'Phi6']
__all__ = bases + bcbases + testbases

#pylint: disable=method-hidden,no-else-return,not-callable,abstract-method,no-member,cyclic-import

xp = sp.Symbol('x', real=True)


[docs] class Orthogonal(JacobiBase): r"""Function space for a regular Legendre series The orthogonal basis is .. math:: L_k, \quad k = 0, 1, \ldots, N-1, where :math:`L_k` is the :math:`k`'th Legendre polynomial. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): JacobiBase.__init__(self, N, quad=quad, alpha=0, beta=0, domain=domain, dtype=dtype, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self.plan(int(padding_factor*N), 0, dtype, {})
[docs] @staticmethod def family(): return 'legendre'
[docs] def points_and_weights(self, N=None, map_true_domain=False, weighted=True, **kw): from . import fastgl if N is None: N = self.shape(False) if self.quad == "LG": points, weights = fastgl.leggauss(N) elif self.quad == "GL": points, weights = legendre_lobatto_nodes_and_weights(N) else: raise NotImplementedError if map_true_domain is True: points = self.map_true_domain(points) return points, weights
[docs] def vandermonde(self, x): return leg.legvander(x, self.shape(False)-1)
[docs] def get_orthogonal(self, **kwargs): d = dict(quad=self.quad, domain=self.domain, dtype=self.dtype, padding_factor=self.padding_factor, dealias_direct=self.dealias_direct, coordinates=self.coors.coordinates) d.update(kwargs) return Orthogonal(self.N, **d)
[docs] def orthogonal_basis_function(self, i=0, x=xp): return sp.legendre(i, x)
[docs] def L2_norm_sq(self, i): return 2/(2*i+1)
[docs] def l2_norm_sq(self, i=None): if i is None: f = 2/(2*np.arange(self.N)+1) if self.quad == 'GL': f[-1] = 2/(self.N-1) return f elif i == self.N-1 and self.quad == 'GL': return 2/(self.N-1) return 2/(2*i+1)
[docs] def evaluate_basis(self, x, i=0, output_array=None): x = np.atleast_1d(x) if output_array is None: output_array = np.zeros(x.shape) output_array = eval_legendre(i, x, out=output_array) return output_array
[docs] def evaluate_basis_derivative(self, x=None, i=0, k=0, output_array=None): if x is None: x = self.mesh(False, False) if output_array is None: output_array = np.zeros(x.shape) x = np.atleast_1d(x) basis = np.zeros(self.shape(True)) basis[i] = 1 basis = leg.Legendre(basis) if k > 0: basis = basis.deriv(k) output_array[:] = basis(x) return output_array
[docs] def evaluate_basis_derivative_all(self, x=None, k=0, argument=0): if x is None: x = self.mesh(False, False) V = self.vandermonde(x) M = V.shape[-1] if k > 0: D = np.zeros((M, M)) D[:-k] = leg.legder(np.eye(M, M), k) V = np.dot(V, D) return V
def _evaluate_expansion_all(self, input_array, output_array, x=None, kind='fast'): if kind != 'fast' or self.quad != 'LG': JacobiBase._evaluate_expansion_all(self, input_array, output_array, x, kind=kind) return assert input_array is self.backward.tmp_array assert output_array is self.backward.output_array output_array = self.backward.xfftn() def _evaluate_scalar_product(self, kind='fast'): if kind != 'fast' or self.quad != 'LG': JacobiBase._evaluate_scalar_product(self, kind=kind) return out = self.scalar_product.xfftn() out *= 1/self.domain_factor()
[docs] def eval(self, x, u, output_array=None): x = np.atleast_1d(x) if output_array is None: output_array = np.zeros(x.shape, dtype=self.dtype) x = self.map_reference_domain(x) output_array[:] = leg.legval(x, u) return output_array
@property def is_orthogonal(self): return True
[docs] @staticmethod def short_name(): return 'L'
[docs] def stencil_matrix(self, N=None): N = self.N if N is None else N return SparseMatrix({0: 1}, (N, N))
[docs] def sympy_stencil(self, i=sp.Symbol('i', integer=True), j=sp.Symbol('j', integer=True)): return sp.KroneckerDelta(i, j)
[docs] def get_recursion_matrix(self, M, N): k = np.arange(max(M, N)) return SparseMatrix({-1: (k[:min(N, M-1)]+1)/(2*k[:min(N, M-1)]+1), 1: (k[:min(M, N-1)]+1)/(2*k[:min(M, N-1)]+3)}, shape=(M, N))
[docs] def get_bc_space(self): if self._bc_space: return self._bc_space self._bc_space = BCGeneric(self.N, bc=self.bcs, domain=self.domain) return self._bc_space
[docs] def to_ortho(self, input_array, output_array=None): assert input_array.function_space().__class__.__name__ == 'Orthogonal' if output_array: output_array[:] = input_array return output_array return input_array
[docs] def to_chebyshev(self, input_array, output_array=None): from shenfun.forms.arguments import Function, FunctionSpace assert input_array.function_space().__class__.__name__ == 'Orthogonal' C = FunctionSpace(input_array.function_space().N, 'C') return Function(C, buffer=self._leg2cheb(input_array, output_array))
[docs] def plan(self, shape, axis, dtype, options): from .dlt import DLT, Leg2Cheb, Cheb2Leg from shenfun.chebyshev.bases import DCTWrap if shape in (0, (0,)): return if isinstance(axis, tuple): assert len(axis) == 1 axis = axis[-1] if isinstance(self.forward, Transform): if self.forward.input_array.shape == shape and self.axis == axis: # Already planned return opts = config['fftw']['dlt'] opts['overwrite_input'] = 'FFTW_PRESERVE_INPUT' opts.update(options) flags = (fftw.flag_dict[opts['planner_effort']], fftw.flag_dict[opts['overwrite_input']]) threads = opts['threads'] U = fftw.aligned(shape, dtype=float) xfftn_fwd = DLT(U, axes=(axis,), kind='scalar product', threads=threads, flags=flags) V = xfftn_fwd.output_array xfftn_bck = DLT(V, axes=(axis,), kind='backward', threads=threads, flags=flags, output_array=U) V.fill(0) U.fill(0) self._leg2cheb = xfftn_fwd.leg2chebclass if np.dtype(dtype) is np.dtype('complex'): # dct only works on real data, so need to wrap it U = fftw.aligned(shape, dtype=complex) V = fftw.aligned(shape, dtype=complex) U.fill(0) V.fill(0) xfftn_fwd = DCTWrap(xfftn_fwd, U, V) xfftn_bck = DCTWrap(xfftn_bck, V, U) self.axis = axis if self.padding_factor != 1: trunc_array = self._get_truncarray(shape, V.dtype) self.scalar_product = Transform(self.scalar_product, xfftn_fwd, U, V, trunc_array) self.forward = Transform(self.forward, xfftn_fwd, U, V, trunc_array) self.backward = Transform(self.backward, xfftn_bck, trunc_array, V, U) else: self.scalar_product = Transform(self.scalar_product, xfftn_fwd, U, V, V) self.forward = Transform(self.forward, xfftn_fwd, U, V, V) self.backward = Transform(self.backward, xfftn_bck, V, V, U) self.si = islicedict(axis=self.axis, dimensions=U.ndim) self.sl = slicedict(axis=self.axis, dimensions=U.ndim)
CompositeBase = getCompositeBase(Orthogonal) BCGeneric = getBCGeneric(CompositeBase)
[docs] class ShenDirichlet(CompositeBase): r"""Function space for Dirichlet boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_k - L_{k+2}, \, k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= \frac{1}{2}(L_0-L_1), \\ \phi_{N-1} &= \frac{1}{2}(L_0+L_1), such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a \text{ and } u(1) = b. The last two basis functions are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : tuple of numbers Boundary conditions at edges of domain domain : 2-tuple of numbers, optional The computational domain scaled : bool, optional Whether or not to scale test functions with 1/sqrt(4k+6). Scaled test functions give a stiffness matrix equal to the identity matrix. padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0), domain=(-1, 1), dtype=float, scaled=False, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, scaled=scaled, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 2: -1} if self.is_scaled(): self._stencil = {0: 1/sp.sqrt(4*n+6), 2: -1/sp.sqrt(4*n+6)}
[docs] @staticmethod def boundary_condition(): return 'Dirichlet'
[docs] @staticmethod def short_name(): return 'SD'
[docs] class Phi1(CompositeBase): r"""Function space for Dirichlet boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= \frac{1}{2}(L_k - L_{k+2}) = \frac{(2k+3)(1-x^2)}{2(k+1)(k+2)} L'_{k+1}, \, k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= \frac{1}{2}(L_0-L_1), \\ \phi_{N-1} &= \frac{1}{2}(L_0+L_1), such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a \text{ and } u(1) = b. The last two basis functions are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : tuple of numbers Boundary conditions at edges of domain domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: sp.S.Half, 2: -sp.S.Half}
[docs] @staticmethod def boundary_condition(): return 'Dirichlet'
[docs] @staticmethod def short_name(): return 'P1'
[docs] class ShenNeumann(CompositeBase): r"""Function space for Neumann boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_{k} - \frac{k(k+1)}{(k+2)(k+3)}L_{k+2}, \, k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= \frac{1}{6}(3L_1-L_2), \\ \phi_{N-1} &= \frac{1}{6}(3L_1+L_2), such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u'(-1) &= a \text{ and } u'(1) = b. The last two bases are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 2-tuple of numbers Boundary conditions at edges of domain domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0), domain=(-1, 1), padding_factor=1, dealias_direct=False, dtype=float, coordinates=None, **kw): if isinstance(bc, (tuple, list)): bc = BoundaryConditions({'left': {'N': bc[0]}, 'right': {'N': bc[1]}}, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 2: -n*(n + 1)/(n**2 + 5*n + 6)}
[docs] @staticmethod def boundary_condition(): return 'Neumann'
[docs] @staticmethod def short_name(): return 'SN'
[docs] class ShenBiharmonic(CompositeBase): r"""Function space for biharmonic equation The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_n - \frac{4n+10}{2n+7}L_{n+2}+\frac{2 n + 3}{2 n + 7}L_{n+4}, \, k=0, 1, \ldots, N-5, \\ \phi_{N-4} &= \tfrac{1}{2}L_0-\tfrac{3}{5}L_1+\tfrac{1}{10}L_3, \\ \phi_{N-3} &= \tfrac{1}{6}L_0-\tfrac{1}{10}L_1-\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, \\ \phi_{N-2} &= \tfrac{1}{2}L_0+\tfrac{3}{5}L_1-\tfrac{1}{10}L_3), \\ \phi_{N-1} &= -\tfrac{1}{6}L_0-\tfrac{1}{10}L_1+\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1)&=a, u'(-1) = b, u(1)=c, u'(1) = d. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 4-tuple of numbers, optional The values of the 4 boundary conditions at x=(-1, 1). The two conditions on x=-1 first, and then x=1. With (a, b, c, d) corresponding to bc = {'left': [('D', a), ('N', b)], 'right': [('D', c), ('N', d)]} domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0, 0, 0), domain=(-1, 1), padding_factor=1, dealias_direct=False, dtype=float, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 2: -(4*n + 10)/(2*n + 7), 4: (2*n + 3)/(2*n + 7)}
[docs] @staticmethod def boundary_condition(): return 'Biharmonic'
[docs] @staticmethod def short_name(): return 'SB'
[docs] class Phi2(CompositeBase): r"""Function space for biharmonic equation The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-5` are .. math:: \phi_k &= \frac{(1-x^2)^2 L''_{k+2}}{h^{(2)}_{k+2}}, \\ h^{(2)}_{k+2} &= \int_{-1}^1 L''_{k+2} L''_{k+2} (1-x^2)^2 dx, \\ &= \frac{2 (k+1)(k+2)(k+3)(k+4)}{2k+5}, which (along with boundary functions) becomes the basis .. math:: \phi_k &= \frac{1}{2(2k+3)}\left(L_k - \frac{2(2k+5)}{2k+7}L_{k+2} + \frac{2k+3}{2k+7}L_{k+4}\right), \, k=0, 1, \ldots, N-5, \\ \phi_{N-4} &= \tfrac{1}{2}L_0-\tfrac{3}{5}L_1+\tfrac{1}{10}L_3, \\ \phi_{N-3} &= \tfrac{1}{6}L_0-\tfrac{1}{10}L_1-\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, \\ \phi_{N-2} &= \tfrac{1}{2}L_0+\tfrac{3}{5}L_1-\tfrac{1}{10}L_3, \\ \phi_{N-1} &= -\tfrac{1}{6}L_0-\tfrac{1}{10}L_1+\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1)&=a, u'(-1) = b, u(1)=c, u'(1) = d. The last four basis functions are for boundary conditions and only used if a, b, c or d are different from 0. In one dimension :math:`\hat{u}_{N-4}=a`, :math:`\hat{u}_{N-3}=b`, :math:`\hat{u}_{N-2}=c` and :math:`\hat{u}_{N-1}=d`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 4-tuple of numbers, optional The values of the 4 boundary conditions at x=(-1, 1). The two on x=-1 first and then x=1. (a, b, c, d) domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0, 0, 0), domain=(-1, 1), padding_factor=1, dealias_direct=False, dtype=float, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1/(2*(2*n+3)), 2: -(2*n+5)/(2*n+7)/(2*n+3), 4: 1/(2*(2*n+7))}
[docs] @staticmethod def boundary_condition(): return 'Biharmonic'
[docs] @staticmethod def short_name(): return 'P2'
[docs] class Phi3(CompositeBase): r"""Function space for 6th order equations The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-7` are .. math:: \phi_k &= \frac{(1-x^2)^3}{h^{(3)}_{k+3}} L^{(3)}_{k+3}}, \, k=0, 1, \ldots, N-7, \\ h^{(3)}_{k+3} &= \frac{2\Gamma(k+7)}{\Gamma(k+1)(2k+7)} = \int_{-1}^1 L^{(3)}_{k+3} L^{(3)}_{k+3}(1-x^2)^3 dx, where :math:`L^{(3)}_k` is the 3'rd derivative of :math:`L_k`. The 6 boundary basis functions are computed using :func:`.jacobi.findbasis.get_bc_basis`, but they are too messy to print here. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(-1)=b, u''(-1)=c, u(1)=d u'(1)=e, u''(1)=f. The last 6 basis functions are for boundary conditions and only used if there are nonzero boundary conditions. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 6-tuple of numbers, optional Boundary conditions. domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0,)*6, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) #self._stencil = { # 0: sp.simplify(matpow(b, 3, 0, 0, n+3, n) / h(0, 0, n, 0)), # 2: sp.simplify(matpow(b, 3, 0, 0, n+3, n+2) / h(0, 0, n+2, 0)), # 4: sp.simplify(matpow(b, 3, 0, 0, n+3, n+4) / h(0, 0, n+4, 0)), # 6: sp.simplify(matpow(b, 3, 0, 0, n+3, n+6) / h(0, 0, n+6, 0))} self._stencil = { 0: 1/(2*(4*n**2 + 16*n + 15)), 2: -3/(8*n**2 + 48*n + 54), 4: 3/(2*(4*n**2 + 32*n + 55)), 6: -1/(8*n**2 + 80*n + 198) }
[docs] @staticmethod def boundary_condition(): return '6th order'
[docs] @staticmethod def short_name(): return 'P3'
[docs] class Phi4(CompositeBase): r"""Function space with 2 Dirichlet and 6 Neumann boundary conditions The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-9` are .. math:: \phi_k &= \frac{(1-x^2)^4}{h^{(4)}_{k+4}} L^{(4)}_{k+4}, \\ h^{(4)}_{k+4} &= \frac{2\Gamma(k+9)}{\Gamma(k+1)(2k+9)} = \int_{-1}^1 L^{(4)}_{k+4} L^{(4)}_{k+4} (1-x^2)^4 dx, where :math:`L^{(4)}_k` is the 4'th derivative of :math:`L_k`. The boundary basis for inhomogeneous boundary conditions is too messy to print, but can be obtained using :func:`~shenfun.utilities.findbasis.get_bc_basis`. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(-1)=b, u''(-1)=c, u'''(-1)=d, u(1)=e u'(1)=f, u''(1)=g, u'''(1)=h. The last 8 basis functions are for boundary conditions and only used if there are nonzero boundary conditions. Parameters ---------- N : int, optional Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 8-tuple of numbers domain : 2-tuple of numbers, optional The computational domain dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0,)*8, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) #self._stencil = { # 0: sp.simplify(matpow(b, 4, 0, 0, n+4, n) / h(0, 0, n, 0)), # 2: sp.simplify(matpow(b, 4, 0, 0, n+4, n+2) / h(0, 0, n+2, 0)), # 4: sp.simplify(matpow(b, 4, 0, 0, n+4, n+4) / h(0, 0, n+4, 0)), # 6: sp.simplify(matpow(b, 4, 0, 0, n+4, n+6) / h(0, 0, n+6, 0)), # 8: sp.simplify(matpow(b, 4, 0, 0, n+4, n+8) / h(0, 0, n+8, 0))} # Below are the same but faster since already simplified self._stencil = { 0: 1/(2*(8*n**3 + 60*n**2 + 142*n + 105)), 2: -2/(8*n**3 + 84*n**2 + 262*n + 231), 4: 3*(2*n + 9)/((2*n + 5)*(2*n + 7)*(2*n + 11)*(2*n + 13)), 6: -2/(8*n**3 + 132*n**2 + 694*n + 1155), 8: 1/(2*(8*n**3 + 156*n**2 + 1006*n + 2145)) }
[docs] @staticmethod def boundary_condition(): return 'Biharmonic*2'
[docs] @staticmethod def short_name(): return 'P4'
[docs] class Phi6(CompositeBase): r"""Function space for 12th order equation The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-9` are .. math:: \phi_k &= \frac{(1-x^2)^6}{h^{(6)}_{k+6}} L^{(6)}_{k+6}, \\ h^{(6)}_{k+6} &= \int_{-1}^1 L^{(6)}_{k+6} L^{(6)}_{k+6} (1-x^2)^6 dx, where :math:`L^{(6)}_k` is the 6'th derivative of :math:`L_k`. The boundary basis for inhomogeneous boundary conditions is too messy to print, but can be obtained using :func:`~shenfun.utilities.findbasis.get_bc_basis`. Parameters ---------- N : int, optional Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 12-tuple of numbers domain : 2-tuple of numbers, optional The computational domain dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0,)*12, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) #self._stencil = { # 0: sp.simplify(matpow(b, 6, 0, 0, n+6, n) / h(0, 0, n, 0)), # 2: sp.simplify(matpow(b, 6, 0, 0, n+6, n+2) / h(0, 0, n+2, 0)), # 4: sp.simplify(matpow(b, 6, 0, 0, n+6, n+4) / h(0, 0, n+4, 0)), # 6: sp.simplify(matpow(b, 6, 0, 0, n+6, n+6) / h(0, 0, n+6, 0)), # 8: sp.simplify(matpow(b, 6, 0, 0, n+6, n+8) / h(0, 0, n+8, 0)), # 10: sp.simplify(matpow(b, 6, 0, 0, n+6, n+10) / h(0, 0, n+10, 0)), # 12: sp.simplify(matpow(b, 6, 0, 0, n+6, n+12) / h(0, 0, n+12, 0))} # Below are the same but faster since already simplified self._stencil = { 0: 1/(2*(2*n + 3)*(2*n + 5)*(2*n + 7)*(2*n + 9)*(2*n + 11)), 2: -3/((2*n + 3)*(2*n + 7)*(2*n + 9)*(2*n + 11)*(2*n + 15)), 4: 15/(2*(2*n + 5)*(2*n + 7)*(2*n + 11)*(2*n + 15)*(2*n + 17)), 6: -10*(2*n + 13)/((2*n + 7)*(2*n + 9)*(2*n + 11)*(2*n + 15)*(2*n + 17)*(2*n + 19)), 8: 15/(2*(2*n + 9)*(2*n + 11)*(2*n + 15)*(2*n + 19)*(2*n + 21)), 10: -3/((2*n + 11)*(2*n + 15)*(2*n + 17)*(2*n + 19)*(2*n + 23)), 12: 1/(2*(2*n + 15)*(2*n + 17)*(2*n + 19)*(2*n + 21)*(2*n + 23)) }
[docs] @staticmethod def boundary_condition(): return '12th order'
[docs] @staticmethod def short_name(): return 'P6'
[docs] class BeamFixedFree(CompositeBase): r"""Function space for fixed free beams The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_k + a_kL_{k+1} + b_k L_{k+2} + c_k L_{k+3} + d_k L_{k+4} , \, k=0, 1, \ldots, N-5, \\ \phi_{N-4} &= \tfrac{1}{2}L_0-\tfrac{3}{5}L_1+\tfrac{1}{10}L_3, \\ \phi_{N-3} &= \tfrac{1}{6}L_0-\tfrac{1}{10}L_1-\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, \\ \phi_{N-2} &= \tfrac{1}{2}L_0+\tfrac{3}{5}L_1-\tfrac{1}{10}L_3), \\ \phi_{N-1} &= -\tfrac{1}{6}L_0-\tfrac{1}{10}L_1+\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, where .. math:: a_k &= \frac{4 \left(2 n + 3\right)}{\left(n + 3\right)^{2}}, \\ b_k &= -\frac{2 \left(n - 1\right) \left(n + 1\right) \left(n + 6\right) \left(2 n + 5\right)}{\left(n + 3\right)^{2} \left(n + 4\right) \left(2 n + 7\right)}, \\ c_k &= -\frac{4 \left(n + 1\right)^{2} \left(2 n + 3\right)}{\left(n + 3\right)^{2} \left(n + 4\right)^{2}}, \\ d_k &= \frac{\left(n + 1\right)^{2} \left(n + 2\right)^{2} \left(2 n + 3\right)}{\left(n + 3\right)^{2} \left(n + 4\right)^{2} \left(2 n + 7\right)}. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1)&=a, u'(-1) = b, u''(1)=c, u'''(1) = d. The last four basis functions are for boundary conditions and only used if a, b, c or d are different from 0. In one dimension :math:`\hat{u}_{N-4}=a`, :math:`\hat{u}_{N-3}=b`, :math:`\hat{u}_{N-2}=c` and :math:`\hat{u}_{N-1}=d`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto 4-tuple of numbers, optional The values of the 4 boundary conditions u(-1) = a, u'(-1) = b, u''(1) = c, u'''(1) = d domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0, 0, 0), domain=(-1, 1), padding_factor=1, dealias_direct=False, dtype=float, coordinates=None, **kw): if isinstance(bc, (tuple, list)): bc = BoundaryConditions({'left': {'D': bc[0], 'N': bc[1]}, 'right': {'N2': bc[2], 'N3': bc[3]}}, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = { 0: 1, 1: 4*(2*n + 3)/(n**2 + 6*n + 9), 2: 2*(-2*n**4 - 17*n**3 - 28*n**2 + 17*n + 30)/(2*n**4 + 27*n**3 + 136*n**2 + 303*n + 252), 3: -(8*n**3 + 28*n**2 + 32*n + 12)/(n**4 + 14*n**3 + 73*n**2 + 168*n + 144), 4: (2*n**5 + 15*n**4 + 44*n**3 + 63*n**2 + 44*n + 12)/(2*n**5 + 35*n**4 + 244*n**3 + 847*n**2 + 1464*n + 1008) }
[docs] @staticmethod def boundary_condition(): return 'BeamFixedFree'
[docs] @staticmethod def short_name(): return 'BF'
[docs] class UpperDirichlet(CompositeBase): r"""Function space with single Dirichlet on upper edge The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_{k} - L_{k+1}, \, k=0, 1, \ldots, N-2, \\ \phi_{N-1} &= L_0, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(1) &= a. The last basis function is for boundary condition and only used if a is different from 0. In one dimension :math:`\hat{u}_{N-1}=a`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 2-tuple of (None, number), optional The number is the boundary condition value domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(None, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 1: -1}
[docs] @staticmethod def boundary_condition(): return 'UpperDirichlet'
[docs] @staticmethod def short_name(): return 'UD'
[docs] class ShenBiPolar(CompositeBase): r"""Function space for the Biharmonic equation The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= (1-x^2)^2 L'_{k+1}, \quad k=0,1, \ldots, N-5, \\ \phi_{N-4} &= \tfrac{1}{2}L_0-\tfrac{3}{5}L_1+\tfrac{1}{10}L_3, \\ \phi_{N-3} &= \tfrac{1}{6}L_0-\tfrac{1}{10}L_1-\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, \\ \phi_{N-2} &= \tfrac{1}{2}L_0+\tfrac{3}{5}L_1-\tfrac{1}{10}L_3), \\ \phi_{N-1} &= -\tfrac{1}{6}L_0-\tfrac{1}{10}L_1+\tfrac{1}{6}L_2+\tfrac{1}{10}L_3, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1)&=a, u'(-1) = b, u(1)=c, u'(1) = d. The last four bases are for boundary conditions and only used if a, b, c or d are different from 0. In one dimension :math:`\hat{u}_{N-4}=a`, :math:`\hat{u}_{N-3}=b`, :math:`\hat{u}_{N-2}=c` and :math:`\hat{u}_{N-1}=d`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 4-tuple of numbers, optional The values of the 4 boundary conditions at x=(-1, 1). The two on x=-1 first and then x=1. (a, b, c, d) domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", domain=(-1, 1), bc=(0, 0, 0, 0), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates)
[docs] @staticmethod def boundary_condition(): return 'Biharmonic'
[docs] @staticmethod def short_name(): return 'SP'
[docs] def sympy_stencil(self, i=sp.Symbol('i', integer=True), j=sp.Symbol('j', integer=True)): return RuntimeError, "Not possible for current basis"
[docs] def stencil_matrix(self, N=None): N = self.N if N is None else N k = np.arange(N) ak = k*(k-1)/(2*k-1)/(2*k+1) bk = -2*(k**2+k-1)/(2*k-1)/(2*k+3) ck = (k+1)*(k+2)/(2*k+1)/(2*k+3) d = np.zeros(N) d[:-4] = (k[:-4]+1)*(k[:-4]+2)/(2*k[:-4]+3)*(ak[2:-2]-bk[:-4]) d[0] = 8/15 d[1] = 24/35 dm2 = np.zeros(N-2) dm2[:-4] = -(k[2:-4]+1)*(k[2:-4]+2)/(2*k[2:-4]+3)*ak[2:-4] dp2 = np.zeros(N-2) dp2[:-2] = (k[:-4]+1)*(k[:-4]+2)/(2*k[:-4]+3)*(bk[2:-2]-ck[:-4]) dp2[0] = -16/21 dp2[1] = -16/15 dp4 = np.zeros(N-4) dp4[:] = (k[:-4]+1)*(k[:-4]+2)/(2*k[:-4]+3)*ck[2:-2] dp4[0] = 8/35 dp4[1] = 8/21 return SparseMatrix({-2: dm2, 0: d, 2: dp2, 4: dp4}, (N, N))
[docs] class DirichletNeumann(CompositeBase): r"""Function space for mixed Dirichlet/Neumann boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_{k} + \frac{2n+3}{\left(n+2\right)^{2}}L_{k+1} - \frac{\left(n+1\right)^{2}}{\left(n+2\right)^{2}} L_{k+2}, \, k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= L_0, \\ \phi_{N-1} &= L_0+L_1, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(1)=b. The last two bases are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : tuple of numbers Boundary conditions at edges of domain. Dirichlet first. domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): if isinstance(bc, (tuple, list)): bc = BoundaryConditions({'left': {'D': bc[0]}, 'right': {'N': bc[1]}}, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 1: (2*n + 3)/(n**2 + 4*n + 4), 2: -(n**2 + 2*n + 1)/(n**2 + 4*n + 4)}
[docs] @staticmethod def boundary_condition(): return 'DirichletNeumann'
[docs] @staticmethod def short_name(): return 'DN'
[docs] class LowerDirichlet(CompositeBase): r"""Function space with single Dirichlet boundary condition The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_{k} + L_{k+1}, \, k=0, 1, \ldots, N-2, \\ \phi_{N-1} &= L_0, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a. The last basis function is for boundary condition and only used if a is different from 0. In one dimension :math:`\hat{u}_{N-1}=a`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : tuple of (number, None) Boundary conditions at edges of domain. domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, None), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 1: 1}
[docs] @staticmethod def boundary_condition(): return 'LowerDirichlet'
[docs] @staticmethod def short_name(): return 'LD'
[docs] class NeumannDirichlet(CompositeBase): r"""Function space for mixed Neumann/Dirichlet boundary conditions The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_{k} - \frac{2n+3}{\left(n+2\right)^{2}}L_{k+1} - \frac{\left(n+1\right)^{2}}{\left(n+2\right)^{2}}L_{k+2}, \, k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= -L_0+L_1, \\ \phi_{N-1} &= L_0, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u'(-1) &= a, u(1)=b. The last two bases are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : tuple of numbers Boundary conditions at edges of domain. Neumann first. domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): if isinstance(bc, (tuple, list)): bc = BoundaryConditions({'left': {'N': bc[0]}, 'right': {'D': bc[1]}}, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 1: -(2*n + 3)/(n**2 + 4*n + 4), 2: -(n**2 + 2*n + 1)/(n**2 + 4*n + 4)}
[docs] @staticmethod def boundary_condition(): return 'NeumannDirichlet'
[docs] @staticmethod def short_name(): return 'ND'
[docs] class UpperDirichletNeumann(CompositeBase): r"""Function space for both Dirichlet and Neumann boundary conditions on the right hand side. The basis :math:`\{\phi_k\}_{k=0}^{N-1}` is .. math:: \phi_k &= L_{k} - \frac{2k+3}{k+2}L_{k+1} + \frac{k+1}{k+2}L_{k+2}, \, k=0, 1, \ldots, N-3, \\ \phi_{N-2} &= L_0, \\ \phi_{N-1} &= -L_0+L_1, such that .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(1) &= a, u'(1)=b. The last two bases are for boundary conditions and only used if a or b are different from 0. In one dimension :math:`\hat{u}_{N-2}=a` and :math:`\hat{u}_{N-1}=b`. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : tuple of numbers Boundary conditions at edges of domain, Dirichlet first. domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` Note ---- This basis is not recommended as it leads to a poorly conditioned stiffness matrix. """ def __init__(self, N, quad="LG", bc=(0, 0), domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): if isinstance(bc, (tuple, list)): bc = BoundaryConditions({'right': {'D': bc[0], 'N': bc[1]}}, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) self._stencil = {0: 1, 1: -(2*n + 3)/(n + 2), 2: (n + 1)/(n + 2)}
[docs] @staticmethod def boundary_condition(): return 'UpperDirichletNeumann'
[docs] @staticmethod def short_name(): return 'UDN'
class Compact3(CompositeBase): r"""Function space for 6th order equations The basis functions :math:`\phi_k` for :math:`k=0, 1, \ldots, N-7` are .. math:: \phi_k &= \frac{h_k}{b^{(3)}_{k+3,k}}\frac{(1-x^2)^3}{h^{(3)}_{k+3}} L^{(3)}_{k+3}}, \, k=0, 1, \ldots, N-7, \\ h^{(3)}_{k+3} &= \frac{2\Gamma(k+7)}{\Gamma(k+1)(2k+7)} = \int_{-1}^1 L^{(3)}_{k+3} L^{(3)}_{k+3}(1-x^2)^3 dx, where :math:`L^{(3)}_k` is the 3'rd derivative of :math:`L_k`. The 6 boundary basis functions are computed using :func:`.jacobi.findbasis.get_bc_basis`, but they are too messy to print here. We have .. math:: u(x) &= \sum_{k=0}^{N-1} \hat{u}_k \phi_k(x), \\ u(-1) &= a, u'(-1)=b, u''(-1)=c, u(1)=d u'(1)=e, u''(1)=f. The last 6 basis functions are for boundary conditions and only used if there are nonzero boundary conditions. Parameters ---------- N : int Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : 6-tuple of numbers, optional Boundary conditions. domain : 2-tuple of numbers, optional The computational domain padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` """ def __init__(self, N, quad="LG", bc=(0,)*6, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates) #self._stencil = { # 0: 1, # 2: sp.simplify(matpow(b, 3, 0, 0, n+3, n+2) / matpow(b, 3, 0, 0, n+3, n) * h(0, 0, n, 0) / h(0, 0, n+2, 0)), # 4: sp.simplify(matpow(b, 3, 0, 0, n+3, n+4) / matpow(b, 3, 0, 0, n+3, n) * h(0, 0, n, 0) / h(0, 0, n+4, 0)), # 6: sp.simplify(matpow(b, 3, 0, 0, n+3, n+6) / matpow(b, 3, 0, 0, n+3, n) * h(0, 0, n, 0) / h(0, 0, n+6, 0))} self._stencil = { 0: 1, 2: -(6*n + 15)/(2*n + 9), 4: 3*(2*n + 3)/(2*n + 11), 6: -(2*n + 3)*(2*n + 5)/((2*n + 9)*(2*n + 11)) } @staticmethod def boundary_condition(): return '6th order' @staticmethod def short_name(): return 'C3'
[docs] class Generic(CompositeBase): r"""Function space for space with any boundary conditions Any combination of Dirichlet and Neumann is possible. Parameters ---------- N : int, optional Number of quadrature points quad : str, optional Type of quadrature - LG - Legendre-Gauss - GL - Legendre-Gauss-Lobatto bc : dict, optional The dictionary must have keys 'left' and 'right', to describe boundary conditions on the left and right boundaries. Specify Dirichlet on both ends with {'left': {'D': a}, 'right': {'D': b}} for some values `a` and `b`, that will be neglected in the current function. Specify mixed Neumann and Dirichlet as {'left': {'N': a}, 'right': {'N': b}} For both conditions on the right do {'right': {'N': a, 'D': b}} Any combination should be possible, and it should also be possible to use second derivatives `N2`. See :class:`~shenfun.spectralbase.BoundaryConditions`. domain : 2-tuple of numbers, optional The computational domain dtype : data-type, optional Type of input data in real physical space. Will be overloaded when basis is part of a :class:`.TensorProductSpace`. padding_factor : float, optional Factor for padding backward transforms. dealias_direct : bool, optional Set upper 1/3 of coefficients to zero before backward transform coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem, and parameters to :class:`~shenfun.coordinates.Coordinates` Note ---- A test function is always using homogeneous boundary conditions. """ def __init__(self, N, quad="LG", bc={}, domain=(-1, 1), dtype=float, padding_factor=1, dealias_direct=False, coordinates=None, **kw): if not isinstance(bc, BoundaryConditions): bc = BoundaryConditions(bc, domain=domain) CompositeBase.__init__(self, N, quad=quad, domain=domain, dtype=dtype, bc=bc, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=coordinates)
[docs] @staticmethod def boundary_condition(): return 'Generic'
[docs] @staticmethod def short_name(): return 'GL'