
Shenfun Documentation
Release 2.2.2

Mikael Mortensen

Jun 22, 2020

CONTENTS

1 Introduction 1
1.1 Spectral Galerkin . 1
1.2 Tensor products . 2
1.3 Tribute . 4

2 Getting started 5
2.1 Basic usage . 5
2.2 Operators . 8
2.3 Multidimensional problems . 9
2.4 Curvilinear coordinates . 10
2.5 Coupled problems . 12
2.6 Integrators . 14
2.7 MPI . 16

3 Post processing 21
3.1 ParaView . 23

4 Installation 25
4.1 Optimization . 26
4.2 Additional dependencies . 26
4.3 Test installation . 26

5 How to cite? 27

6 How to contribute? 29

7 Demos 31
7.1 Demo - 1D Poisson’s equation . 31

7.1.1 Model problem . 32
7.1.2 Implementation . 34

7.2 Demo - Cubic nonlinear Klein-Gordon equation . 36
7.2.1 The nonlinear Klein-Gordon equation . 36
7.2.2 Implementation . 39

7.3 Demo - 3D Poisson’s equation . 44
7.3.1 Model problem . 44
7.3.2 Implementation . 47

7.4 Demo - Helmholtz equation in polar coordinates . 53
7.4.1 Helmholtz equation . 54
7.4.2 Implementation in shenfun . 56
7.4.3 Postprocessing . 57

7.5 Demo - Kuramato-Sivashinsky equation . 60

i

7.5.1 The Kuramato-Sivashinsky equation . 60
7.5.2 Implementation . 62

7.6 Demo - Stokes equations . 64
7.6.1 Model problem . 64
7.6.2 Implementation . 67

7.7 Demo - Lid driven cavity . 70
7.7.1 Navier Stokes equations . 72
7.7.2 Bases and tensor product spaces . 72
7.7.3 Mixed variational form . 74
7.7.4 Implementation of solver . 75
7.7.5 Complete solver . 80

7.8 Demo - Rayleigh Benard . 80
7.8.1 Model problem . 80
7.8.2 Temporal discretization . 84
7.8.3 Shenfun implementation . 85

Bibliography 91

ii

CHAPTER

ONE

INTRODUCTION

1.1 Spectral Galerkin

The spectral Galerkin method solves partial differential equations through a special form of the method of weighted
residuals (WRM). As a Galerkin method it is very similar to the finite element method (FEM). The most distinguishable
feature is that it uses global shape functions, where FEM uses local. This feature leads to highly accurate results with
very few shape functions, but the downside is much less flexibility when it comes to computational domain than FEM.

Consider the Poisson equation with a right hand side function 𝑓(𝑥)

−∇2𝑢(𝑥) = 𝑓(𝑥) for 𝑥 ∈ Ω. (1.1)

To solve this equation, we will eventually need to supplement appropriate boundary conditions. However, for now just
assume that any valid boundary conditions (Dirichlet, Neumann, periodic).

With the method of weighted residuals we attempt to find 𝑢(𝑥) using an approximation, 𝑢𝑁 , to the solution

𝑢(𝑥) ≈ 𝑢𝑁 (𝑥) =

𝑁−1∑︁
𝑘=0

𝑢̂𝑘𝜑𝑘(𝑥). (1.2)

Here the𝑁 expansion coefficients 𝑢̂𝑘 are unknown and {𝜑𝑘}𝑘∈ℐ𝑁 , ℐ𝑁 = 0, 1, . . . , 𝑁−1 are trial functions. Inserting
for 𝑢𝑁 in Eq. (1.1) we get a residual

𝑅𝑁 (𝑥) = ∇2𝑢𝑁 (𝑥) + 𝑓(𝑥) ̸= 0. (1.3)

With the WRM we now force this residual to zero in an average sense using test function 𝑣(𝑥) and weight function
𝑤(𝑥)

(𝑅𝑁 , 𝑣)𝑤 :=

∫︁
Ω

𝑅𝑁 (𝑥) 𝑣(𝑥)𝑤(𝑥)𝑑𝑥 = 0, (1.4)

where 𝑣 is the complex conjugate of 𝑣. If we now choose the test functions from the same space as the trial functions,
i.e., 𝑉𝑁 = 𝑠𝑝𝑎𝑛{𝜑𝑘}𝑘∈ℐ𝑁 , then the WRM becomes the Galerkin method, and we get 𝑁 equations for 𝑁 unknowns
{𝑢̂𝑘}𝑘∈ℐ𝑁 ∑︁

𝑗∈ℐ𝑁

(︀
−∇2𝜑𝑗 , 𝜑𝑘

)︀
𝑤⏟ ⏞

𝐴𝑘𝑗

𝑢̂𝑗 = (𝑓, 𝜑𝑘)𝑤 , for 𝑘 ∈ ℐ𝑁 .
(1.5)

Note that this is a regular linear system of algebra equations

𝐴𝑘𝑗 𝑢̂𝑗 = 𝑓𝑘,

where the matrix 𝐴 ∈ R𝑁×𝑁 .

1

https://en.wikiversity.org/wiki/Introduction_to_finite_elements/Weighted_residual_methods
https://en.wikiversity.org/wiki/Introduction_to_finite_elements/Weighted_residual_methods
https://en.wikipedia.org/wiki/Finite_element_method

Shenfun Documentation, Release 2.2.2

The choice of basis functions 𝑣(𝑥) is highly central to the method. For the Galerkin method to be spectral, the basis is
usually chosen as linear combinations of Chebyshev, Legendre, Laguerre, Hermite, Jacobi or trigonometric functions.
In one spatial dimension typical choices for 𝜑𝑘 are

𝜑𝑘(𝑥) = 𝑇𝑘(𝑥)

𝜑𝑘(𝑥) = 𝑇𝑘(𝑥) − 𝑇𝑘+2(𝑥)

𝜑𝑘(𝑥) = 𝐿𝑘(𝑥)

𝜑𝑘(𝑥) = 𝐿𝑘(𝑥) − 𝐿𝑘+2(𝑥)

𝜑𝑘(𝑥) = exp(𝚤𝑘𝑥)

where 𝑇𝑘, 𝐿𝑘 are the 𝑘’th Chebyshev polynomial of the first kind and the 𝑘’th Legendre polynomial, respectively. Note
that the second and fourth functions above satisfy the homogeneous Dirichlet boundary conditions 𝜑𝑘(±1) = 0, and
as such these basis functions may be used to solve the Poisson equation (1.1) with homogeneous Dirichlet boundary
conditions. Similarly, two basis functions that satisfy homogeneous Neumann boundary condition 𝑢′(±1) = 0 are

𝜑𝑘 = 𝑇𝑘 −
(︂

𝑘

𝑘 + 2

)︂2

𝑇𝑘+2

𝜑𝑘 = 𝐿𝑘 − 𝑘(𝑘 + 1)

(𝑘 + 2)(𝑘 + 3)
𝐿𝑘+2

Shenfun contains classes for working with several such bases, to be used for different equations and boundary condi-
tions.

Complete demonstration programs that solves the Poisson equation (1.1), and some other problems can be found by
following these links

• Demo - 1D Poisson’s equation

• Demo - 3D Poisson’s equation

• Demo - Helmholtz equation in polar coordinates

• Demo - Helmholtz equation on the unit sphere

• Demo - Cubic nonlinear Klein-Gordon equation

• Demo - Kuramato-Sivashinsky equation

• Demo - Stokes equations

• Demo - Lid driven cavity

• Demo - Rayleigh Benard

1.2 Tensor products

If the problem is two-dimensional, then we need two basis functions, one per dimension. If we call the basis function
along 𝑥-direction 𝒳 (𝑥) and along 𝑦-direction 𝒴(𝑦), a test function can then be computed as

𝑣(𝑥, 𝑦) = 𝒳 (𝑥)𝒴(𝑦).

If we now have a problem that has Dirichlet boundaries in the 𝑥-direction and periodic boundaries in the 𝑦-direction,
then we can choose 𝒳𝑘(𝑥) = 𝑇𝑘 − 𝑇𝑘+2, for 𝑘 ∈ ℐ𝑁−2 (with 𝑁 − 2 because 𝑇𝑘+2 then equals 𝑇𝑁 for 𝑘 = 𝑁 − 2),
𝒴𝑙(𝑦) = exp(𝚤𝑙𝑦) for 𝑙 ∈ ℐ𝑀 and a tensor product test function is then

𝑣𝑘𝑙(𝑥, 𝑦) = (𝑇𝑘(𝑥) − 𝑇𝑘+2(𝑥)) exp(𝚤𝑙𝑦), for (𝑘, 𝑙) ∈ ℐ𝑁−2 × ℐ𝑀 . (1.6)

2 Chapter 1. Introduction

Shenfun Documentation, Release 2.2.2

In other words, we choose one test function per spatial dimension and create global basis functions by taking the
outer products (or tensor products) of these individual test functions. Since global basis functions simply are the
tensor products of one-dimensional basis functions, it is trivial to move to even higher-dimensional spaces. The
multi-dimensional basis functions then form a basis for a multi-dimensional tensor product space. The associated
domains are similarily formed by taking Cartesian products of the one-dimensional domains. For example, if the one-
dimensional domains in 𝑥- and 𝑦-directions are [−1, 1] and [0, 2𝜋], then the two-dimensional domain formed from
these two are [−1, 1] × [0, 2𝜋], where × represents a Cartesian product.

The one-dimensional domains are discretized using the quadrature points of the chosen basis functions. If the meshes
in 𝑥- and 𝑦-directions are 𝑥 = {𝑥𝑖}𝑖∈ℐ𝑁 and 𝑦 = {𝑦𝑗}𝑗∈ℐ𝑀 , then a Cartesian product mesh is 𝑥× 𝑦. With index and
set builder notation it is given as

𝑥× 𝑦 =
{︀

(𝑥𝑖, 𝑦𝑗) | (𝑖, 𝑗) ∈ ℐ𝑁 × ℐ𝑀
}︀
. (1.7)

With shenfun a user chooses the appropriate bases for each dimension of the problem, and may then combine these
bases into tensor product spaces and Cartesian product domains. For example, to create the required spaces for the
aforementioned domain, with Dirichlet in 𝑥- and periodic in 𝑦-direction, we need the following:

𝑁,𝑀 = (16, 16)

𝐵𝑁 (𝑥) = span{𝑇𝑘(𝑥) − 𝑇𝑘+2(𝑥)}𝑘∈ℐ𝑁−2

𝐵𝑀 (𝑦) = span{exp(𝚤𝑙𝑦)}𝑙∈ℐ𝑀

𝑉 (𝑥, 𝑦) = 𝐵𝑁 (𝑥) ⊗𝐵𝑀 (𝑦)

where ⊗ represents a tensor product.

This can be implemented in shenfun as follows:

from shenfun import Basis, TensorProductSpace
from mpi4py import MPI
comm = MPI.COMM_WORLD
N, M = (16, 16)
BN = Basis(N, 'Chebyshev', bc=(0, 0))
BM = Basis(M, 'Fourier', dtype='d')
V = TensorProductSpace(comm, (BN, BM))

Note that the Chebyshev basis is created using 𝑁 and not 𝑁 − 2. The chosen boundary condition bc=(0, 0)
ensures that only 𝑁 − 2 bases will be used. The Fourier basis BM has been defined for real inputs to a forward
transform, which is ensured by the dtype keyword being set to d for double. dtype specifies the data type that is
input to the forward method, or the data type of the solution in physical space. Setting dtype='D' indicates that
this datatype will be complex. Note that it will not trigger an error, or even lead to wrong results, if dtype is by
mistake set to D. It is merely less efficient to work with complex data arrays where double precision is sufficient. See
Sec Getting started for more information on getting started with using bases.

Shenfun is parallelized with MPI through the mpi4py-fft package. If we store the current example in filename.py,
then it can be run with more than one processor, e.g., like:

mpirun -np 4 python filename.py

In this case the tensor product space V will be distributed with the slab method (since the problem is 2D) and it can
here use a maximum of 9 CPUs. The maximum is 9 since the last dimension is transformed from 16 real numbers to
9 complex, using the Hermitian symmetry of real transforms, i.e., the shape of a transformed array in the V space will
be (14, 9). You can read more about MPI in the later section MPI.

1.2. Tensor products 3

https://bitbucket.org/mpi4py/mpi4py-fft

Shenfun Documentation, Release 2.2.2

1.3 Tribute

Shenfun is named as a tribute to Prof. Jie Shen, as it contains many tools for working with his modified Chebyshev
and Legendre bases, as described here:

• Jie Shen, SIAM Journal on Scientific Computing, 15 (6), 1489-1505 (1994) (JS1)

• Jie Shen, SIAM Journal on Scientific Computing, 16 (1), 74-87, (1995) (JS2)

Shenfun has implemented classes for the bases described in these papers, and within each class there are methods
for fast transforms, inner products and for computing matrices arising from bilinear forms in the spectral Galerkin
method.

4 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

2.1 Basic usage

Shenfun consists of classes and functions whoose purpose are to make it easier to implement PDE’s with spectral
methods in simple tensor product domains. The most important everyday tools are

• TensorProductSpace

• MixedTensorProductSpace

• TrialFunction

• TestFunction

• Function

• Array

• inner()

• div()

• grad()

• project()

• Basis()

A good place to get started is by creating a Basis(). There are six families of bases: Fourier, Chebyshev, Legendre,
Laguerre, Hermite and Jacobi. All bases are defined on a one-dimensional domain, with their own basis functions
and quadrature points. For example, we have the regular Chebyshev basis {𝑇𝑘}𝑁−1

𝑘=0 , where 𝑇𝑘 is the 𝑘’th Chebyshev
polynomial of the first kind. To create such a basis with 8 quadrature points (i.e., {𝑇𝑘}7𝑘=0) do:

from shenfun import Basis
N = 8
T = Basis(N, 'Chebyshev', bc=None)

Here bc=None is used to indicate that there are no boundary conditions associated with this basis, which is the
default, so it could just as well have been left out. To create a regular Legendre basis (i.e., {𝐿𝑘}𝑁−1

𝑘=0 , where 𝐿𝑘 is the
𝑘’th Legendre polynomial), just replace Chebyshev with Legendre above. And to create a Fourier basis, just use
Fourier.

The basis 𝑇 = {𝑇𝑘}𝑁−1
𝑘=0 has many useful methods associated with it, and we may experiment a little. A Function

u using basis 𝑇 has expansion

𝑢(𝑥) =

7∑︁
𝑘=0

𝑢̂𝑘𝑇𝑘(𝑥) (2.1)

5

Shenfun Documentation, Release 2.2.2

and an instance of this function (initialized with {𝑢̂𝑘}7𝑘=0 = 0) is created in shenfun as:

from shenfun import Function
u = Function(T)

Consider now for exampel the polynomial 2𝑥2 − 1, which happens to be exactly equal to 𝑇2(𝑥). We can create this
polynomial using sympy

import sympy as sp
x = sp.Symbol('x')
u = 2*x**2 - 1 # or simply u = sp.chebyshevt(2, x)

The Sympy function u can now be evaluated on the quadrature points of basis 𝑇 :

from shenfun import Array
xj = T.mesh()
ue = Array(T)
ue[:] = [u.subs(x, xx) for xx in xj]
print(xj)

[0.98078528 0.83146961 0.55557023 0.19509032 -0.19509032 -0.55557023
-0.83146961 -0.98078528]

print(ue)
[0.92387953 0.38268343 -0.38268343 -0.92387953 -0.92387953 -0.38268343
0.38268343 0.92387953]

We see that ue is an Array on the basis T, and not a Function. The Array and Function classes are both
subclasses of Numpy’s ndarray, and represent the two arrays associated with the spectral Galerkin function, like (2.1).
The Function represent the entire spectral Galerkin function, with array values corresponding to the expansion
coefficients 𝑢̂. The Array represent the spectral Galerkin function evaluated on the quadrature mesh of the basis T,
i.e., here 𝑢(𝑥𝑖),∀ 𝑖 ∈ 0, 1, . . . , 7.

We now want to find the Function uh corresponding to Array ue. Considering (2.1), this corresponds to finding
𝑢̂𝑘 if the left hand side 𝑢(𝑥𝑗) is known for all quadrature points 𝑥𝑗 .

Since we already know that ue is equal to the second Chebyshev polynomial, we should get an array of expansion co-
efficients equal to 𝑢̂ = (0, 0, 1, 0, 0, 0, 0, 0). We can compute uh either by using project() or a forward transform:

from shenfun import project
uh = Function(T)
uh = T.forward(ue, uh)
or
uh = ue.forward(uh)
or
uh = project(ue, T)
print(uh)

[-1.38777878e-17 6.72002101e-17 1.00000000e+00 -1.95146303e-16
1.96261557e-17 1.15426347e-16 -1.11022302e-16 1.65163507e-16]

So we see that the projection works to machine precision.

The projection is mathematically: find 𝑢ℎ ∈ 𝑇 , such that

(𝑢ℎ − 𝑢, 𝑣)𝑤 = 0 ∀𝑣 ∈ 𝑇,

where 𝑣 is a test function, 𝑢ℎ is a trial function and the notation (·, ·)𝑤 was introduced in (1.4). Using now 𝑣 = 𝑇𝑘 and

6 Chapter 2. Getting started

www.sympy.org
https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.ndarray.html

Shenfun Documentation, Release 2.2.2

𝑢ℎ =
∑︀7

𝑗=0 𝑢̂𝑗𝑇𝑗 , we get

(

7∑︁
𝑗=0

𝑢̂𝑗𝑇𝑗 , 𝑇𝑘)𝑤 = (𝑢, 𝑇𝑘)𝑤,

7∑︁
𝑗=0

(𝑇𝑗 , 𝑇𝑘)𝑤𝑢̂𝑗 = (𝑢, 𝑇𝑘)𝑤,

for all 𝑘 ∈ 0, 1, . . . , 7. This can be rewritten on matrix form as

𝐵𝑘𝑗 𝑢̂𝑗 = 𝑢̃𝑘,

where 𝐵𝑘𝑗 = (𝑇𝑗 , 𝑇𝑘)𝑤, 𝑢̃𝑘 = (𝑢, 𝑇𝑘)𝑤 and summation is implied by the repeating 𝑗 indices. Since the Chebyshev
polynomials are orthogonal the mass matrix 𝐵𝑘𝑗 is diagonal. We can assemble both 𝐵𝑘𝑗 and 𝑢̃𝑗 with shenfun, and at
the same time introduce the TestFunction, TrialFunction classes and the inner() function:

from shenfun import TestFunction, TrialFunction, inner
u = TrialFunction(T)
v = TestFunction(T)
B = inner(u, v)
u_tilde = inner(ue, v)
print(B)

{0: array([3.14159265, 1.57079633, 1.57079633, 1.57079633, 1.57079633,
1.57079633, 1.57079633, 1.57079633])}

print(u_tilde)
[-4.35983562e-17 1.05557843e-16 1.57079633e+00 -3.06535096e-16
3.08286933e-17 1.81311282e-16 -1.74393425e-16 2.59438230e-16]

The inner() function represents the (weighted) inner product and it expects one test function, and possibly one trial
function. If, as here, it also contains a trial function, then a matrix is returned. If inner() contains one test, but no
trial function, then an array is returned. Finally, if inner() contains no test nor trial function, but instead a number
and an Array, like:

a = Array(T, val=1)
print(inner(1, a))

2.0

then inner() represents a non-weighted integral over the domain. Here it returns the length of the domain (2.0)
since a is initialized to unity.

Note that the matrix 𝐵 assembled above is stored using shenfun’s SpectralMatrix class, which is a subclass of
Python’s dictionary, where the keys are the diagonals and the values are the diagonal entries. The matrix 𝐵 is seen to
have only one diagonal (the principal) {𝐵𝑖𝑖}7𝑖=0.

With the matrix comes a solve method and we can solve for 𝑢̂ through:

u_hat = Function(T)
u_hat = B.solve(u_tilde, u=u_hat)
print(u_hat)

[-1.38777878e-17 6.72002101e-17 1.00000000e+00 -1.95146303e-16
1.96261557e-17 1.15426347e-16 -1.11022302e-16 1.65163507e-16]

which obviously is exactly the same as we found using project() or the T.forward function.

Note that Array merely is a subclass of Numpy’s ndarray, whereas Function is a subclass of both Numpy’s
ndarray and the BasisFunction class. The latter is used as a base class for arguments to bilinear and linear
forms, and is as such a base class also for TrialFunction and TestFunction. An instance of the Array class
cannot be used in forms, except from regular inner products of numbers or test function vs an Array. To illustrate,
lets create some forms, where all except the last one is ok:

2.1. Basic usage 7

Shenfun Documentation, Release 2.2.2

from shenfun import Dx
T = Basis(12, 'Legendre')
u = TrialFunction(T)
v = TestFunction(T)
uf = Function(T)
ua = Array(T)
A = inner(v, u) # Mass matrix
c = inner(v, ua) # ok, a scalar product
d = inner(v, uf) # ok, a scalar product (slower than above)
e = inner(1, ua) # ok, non-weighted integral of ua over domain
df = Dx(uf, 0, 1) # ok
da = Dx(ua, 0, 1) # Not ok

AssertionError Traceback (most recent call last)
<ipython-input-14-3b957937279f> in <module>
----> 1 da = inner(v, Dx(ua, 0, 1))

~/MySoftware/shenfun/shenfun/forms/operators.py in Dx(test, x, k)
82 Number of derivatives
83 """

---> 84 assert isinstance(test, (Expr, BasisFunction))
85
86 if isinstance(test, BasisFunction):

AssertionError:

So it is not possible to perform operations that involve differentiation (Dx represents a partial derivative) on an Array
instance. This is because the ua does not contain more information than its values and its TensorProductSpace. A
BasisFunction instance, on the other hand, can be manipulated with operators like div() grad() in creating
instances of the Expr class, see Operators.

Note that any rules for efficient use of Numpy ndarrays, like vectorization, also applies to Function and Array
instances.

2.2 Operators

Operators act on any single instance of a BasisFunction, which can be Function, TrialFunction or
TestFunction. The implemented operators are:

• div()

• grad()

• curl()

• Dx()

Operators are used in variational forms assembled using inner() or project(), like:

A = inner(grad(u), grad(v))

which assembles a stiffness matrix A. Note that the two expressions fed to inner must have consistent rank. Here, for
example, both grad(u) and grad(v) have rank 1 of a vector.

8 Chapter 2. Getting started

Shenfun Documentation, Release 2.2.2

2.3 Multidimensional problems

As described in the introduction, a multidimensional problem is handled using tensor product spaces, that have basis
functions generated from taking the outer products of one-dimensional basis functions. We create tensor product
spaces using the class TensorProductSpace:

N, M = (12, 16)
C0 = Basis(N, 'L', bc=(0, 0), scaled=True)
K0 = Basis(M, 'F', dtype='d')
T = TensorProductSpace(comm, (C0, K0))

Associated with this is a Cartesian mesh [−1, 1] × [0, 2𝜋]. We use classes Function, TrialFunction and
TestFunction exactly as before:

u = TrialFunction(T)
v = TestFunction(T)
A = inner(grad(u), grad(v))

However, now A will be a tensor product matrix, or more correctly, the sum of two tensor product matrices. This can
be seen if we look at the equations beyond the code. In this case we are using a composite Legendre basis for the first
direction and Fourier exponentials for the second, and the tensor product basis function is

𝑣𝑘𝑙(𝑥, 𝑦) =
1√

4𝑘 + 6
(𝐿𝑘(𝑥) − 𝐿𝑘+2(𝑥)) exp(𝚤𝑙𝑦),

= Ψ𝑘(𝑥)𝜑𝑙(𝑦),

where 𝐿𝑘 is the 𝑘’th Legendre polynomial, 𝜓𝑘 = (𝐿𝑘 − 𝐿𝑘+2)/
√

4𝑘 + 6 and 𝜑𝑙 = exp(𝚤𝑙𝑦) are used for simplicity
in later derivations. The trial function becomes

𝑢(𝑥, 𝑦) =
∑︁
𝑘

∑︁
𝑙

𝑢̂𝑘𝑙𝑣𝑘𝑙

and the inner product is

(∇𝑢,∇𝑣)𝑤 =

∫︁ 1

−1

∫︁ 2𝜋

0

∇𝑢 · ∇𝑣𝑑𝑥𝑑𝑦,

=

∫︁ 1

−1

∫︁ 2𝜋

0

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦,

=

∫︁ 1

−1

∫︁ 2𝜋

0

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝑑𝑥𝑑𝑦 +

∫︁ 1

−1

∫︁ 2𝜋

0

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦,

(2.2)

showing that it is the sum of two tensor product matrices. However, each one of these two terms contains the outer
product of smaller matrices. To see this we need to insert for the trial and test functions (using 𝑣𝑚𝑛 for test):∫︁ 1

−1

∫︁ 2𝜋

0

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝑑𝑥𝑑𝑦 =

∫︁ 1

−1

∫︁ 2𝜋

0

𝜕

𝜕𝑥

(︃∑︁
𝑘

∑︁
𝑙

𝑢̂𝑘𝑙Ψ𝑘(𝑥)𝜑𝑙(𝑦)

)︃
𝜕

𝜕𝑥
(Ψ𝑚(𝑥)𝜑𝑛(𝑦)) 𝑑𝑥𝑑𝑦,

=
∑︁
𝑘

∑︁
𝑙

∫︁ 1

−1

𝜕Ψ𝑘(𝑥)

𝜕𝑥

𝜕Ψ𝑚(𝑥)

𝜕𝑥
𝑑𝑥⏟ ⏞

𝐴𝑚𝑘

∫︁ 2𝜋

0

𝜑𝑙(𝑦)𝜑𝑛(𝑦)𝑑𝑦⏟ ⏞
𝐵𝑛𝑙

𝑢̂𝑘𝑙,

where 𝐴 ∈ R𝑁−2×𝑁−2 and 𝐵 ∈ R𝑀×𝑀 . The tensor product matrix 𝐴𝑚𝑘𝐵𝑛𝑙 (or in matrix notation 𝐴 ⊗ 𝐵) is the
first item of the two items in the list that is returned by inner(grad(u), grad(v)). The other item is of course

2.3. Multidimensional problems 9

Shenfun Documentation, Release 2.2.2

the second term in the last line of (2.2):∫︁ 1

−1

∫︁ 2𝜋

0

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
𝑑𝑥𝑑𝑦 =

∫︁ 1

−1

∫︁ 2𝜋

0

𝜕

𝜕𝑦

(︃∑︁
𝑘

∑︁
𝑙

𝑢̂𝑘𝑙Ψ𝑘(𝑥)𝜑𝑙(𝑦)

)︃
𝜕

𝜕𝑦
(Ψ𝑚(𝑥)𝜑𝑛(𝑦)) 𝑑𝑥𝑑𝑦

=
∑︁
𝑘

∑︁
𝑙

∫︁ 1

−1

Ψ𝑘(𝑥)Ψ𝑚(𝑥)𝑑𝑥⏟ ⏞
𝐶𝑚𝑘

∫︁ 2𝜋

0

𝜕𝜑𝑙(𝑦)

𝜕𝑦

𝜑𝑛(𝑦)

𝜕𝑦
𝑑𝑦⏟ ⏞

𝐷𝑛𝑙

𝑢̂𝑘𝑙

The tensor product matrices 𝐴𝑚𝑘𝐵𝑛𝑙 and 𝐶𝑚𝑘𝐷𝑛𝑙 are both instances of the TPMatrix class. Together they lead to
linear algebra systems like:

(𝐴𝑚𝑘𝐵𝑛𝑙 + 𝐶𝑚𝑘𝐷𝑛𝑙)𝑢̂𝑘𝑙 = 𝑓𝑚𝑛, (2.3)

where

𝑓𝑚𝑛 = (𝑣𝑚𝑛, 𝑓)𝑤,

for some right hand side 𝑓 , see, e.g., (2.10). Note that an alternative formulation here is

𝐴𝑢̂𝐵𝑇 + 𝐶𝑢̂𝐷𝑇 = 𝑓

where 𝑢̂ and 𝑓 are treated as regular matrices (𝑢̂ ∈ R𝑁−2×𝑀 and 𝑓 ∈ R𝑁−2×𝑀). This formulation is utilized to derive
efficient solvers for tensor product bases in multiple dimensions using the matrix decomposition method in [She94]
and [She95].

Note that in our case the equation system (2.3) can be greatly simplified since three of the submatrices (𝐴𝑚𝑘, 𝐵𝑛𝑙 and
𝐷𝑛𝑙) are diagonal. Even more, two of them equal the identity matrix

𝐴𝑚𝑘 = 𝛿𝑚𝑘,

𝐵𝑛𝑙 = 𝛿𝑛𝑙,

whereas the last one can be written in terms of the identity (no summation on repeating indices)

𝐷𝑛𝑙 = −𝑛𝑙𝛿𝑛𝑙.

Inserting for this in (2.3) and simplifying by requiring that 𝑙 = 𝑛 in the second step, we get

(𝛿𝑚𝑘𝛿𝑛𝑙 − 𝑙𝑛𝐶𝑚𝑘𝛿𝑛𝑙)𝑢̂𝑘𝑙 = 𝑓𝑚𝑛,

(𝛿𝑚𝑘 − 𝑙2𝐶𝑚𝑘)𝑢̂𝑘𝑙 = 𝑓𝑚𝑙.
(2.4)

Now if we keep 𝑙 fixed this latter equation is simply a regular linear algebra problem to solve for 𝑢̂𝑘𝑙, for all 𝑘. Of
course, this solve needs to be carried out for all 𝑙.

Note that there is a generic solver available for the system (2.3) in SolverGeneric2NP that makes no assumptions
on diagonality. However, this solver will, naturally, be quite a bit slower than a tailored solver that takes advan-
tage of diagonality. For the Poisson equation such solvers are available for both Legendre and Chebyshev bases,
see the extended demo Demo - 3D Poisson’s equation or the demo programs dirichlet_poisson2D.py and dirich-
let_poisson3D.py.

2.4 Curvilinear coordinates

Shenfun can be used to solve equations using curvilinear coordinates, like polar, cylindrical and spherical coordinates.
The feature was added April 2020, and is still rather experimental. The curvilinear coordinates are defined by the user,
who needs to provide a map, i.e., the position vector, between new coordinates and the Cartesian coordinates. The

10 Chapter 2. Getting started

https://github.com/spectralDNS/shenfun/blob/master/demo/dirichlet_poisson2D.py
https://github.com/spectralDNS/shenfun/blob/master/demo/dirichlet_poisson3D.py
https://github.com/spectralDNS/shenfun/blob/master/demo/dirichlet_poisson3D.py

Shenfun Documentation, Release 2.2.2

basis functions of the new coordinates need not be orthogonal, but non-orthogonal is not widely tested so use with
care. In shenfun we use non-normalized natural (covariant) basis vectors. For this reason the equations may look a
little bit different than usual. For example, in cylindrical coordinates we have the position vector

r = 𝑟 cos 𝜃 i + 𝑟 sin 𝜃 j + 𝑧 k, (2.5)

where i, j,k are the Cartesian unit vectors and 𝑟, 𝜃, 𝑧 are the new coordinates. The covariant basis vectors are then

b𝑟 =
𝜕r

𝜕𝑟
,

b𝜃 =
𝜕r

𝜕𝜃
,

b𝑧 =
𝜕r

𝜕𝑧
,

(2.6)

leading to

b𝑟 = cos (𝜃) i + sin (𝜃) j,

b𝜃 = −𝑟 sin (𝜃) i + 𝑟 cos (𝜃) j,

b𝑧 = k.

(2.7)

We see that |b𝜃| = 𝑟 and not unity.

A vector u in this basis is given as

u = 𝑢𝑟b𝑟 + 𝑢𝜃b𝜃 + 𝑢𝑧b𝑧, (2.8)

and the vector Laplacian ∇2u is(︂
𝜕2𝑢𝑟

𝜕2𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝑟
+

1

𝑟2
𝜕2𝑢𝑟

𝜕2𝜃
− 2

𝑟

𝜕𝑢𝜃

𝜕𝜃
− 1

𝑟2
𝑢𝑟 +

𝜕2𝑢𝑟

𝜕2𝑧

)︂
b𝑟

+

(︂
𝜕2𝑢𝜃

𝜕2𝑟
+

3

𝑟

𝜕𝑢𝜃

𝜕𝑟
+

2

𝑟3
𝜕𝑢𝑟

𝜕𝜃
+

1

𝑟2
𝜕2𝑢𝜃

𝜕2𝜃
+
𝜕2𝑢𝜃

𝜕2𝑧

)︂
b𝜃

+

(︂
𝜕2𝑢𝑧

𝜕2𝑟
+

1

𝑟

𝜕𝑢𝑧

𝜕𝑟
+

1

𝑟2
𝜕2𝑢𝑧

𝜕2𝜃
+
𝜕2𝑢𝑧

𝜕2𝑧

)︂
b𝑧.

(2.9)

which is slightly different from what you see in most textbooks, which are using normalized basis vectors.

Note that once the curvilinear map has been created, shenfun’s operators div(), grad() and curl() work out of
the box with no additional effort. So you do not have to implement messy equations that look like (2.9) directly. Take
the example with cylindrical coordinates. The vector Laplacian can be implemented as:

from shenfun import *
import sympy as sp

r, theta, z = psi = sp.symbols('x,y,z', real=True, positive=True)
rv = (r*sp.cos(theta), r*sp.sin(theta), z)

N = 10
F0 = Basis(N, 'F', dtype='d')
F1 = Basis(N, 'F', dtype='D')
L = Basis(N, 'L', domain=(0, 1))
T = TensorProductSpace(comm, (L, F1, F0), coordinates=(psi, rv))
V = VectorTensorProductSpace(T)
u = TrialFunction(V)
du = div(grad(u))

2.4. Curvilinear coordinates 11

Shenfun Documentation, Release 2.2.2

There are currently curvilinear demos for solving both Helmholtz’s equation and the biharmonic equation on a circular
disc, a solver for 3D Poisson equation in a pipe, and a solver for the biharmonic equation on a part of the disc.
Also, the Helmholtz equation solved on the unit sphere using spherical coordinates is shown here, and on the torus
here. A solution from solving the biharmonic equation with homogeneous Dirichlet boundary conditions on (𝜃, 𝑟) ∈
[0, 𝜋/2] × [0.5, 1] is shown below.

2.5 Coupled problems

With Shenfun it is possible to solve equations coupled and implicit using the MixedTensorProductSpace class
for multidimensional problems and MixedBasis for one-dimensional problems. As an example, lets consider a
mixed formulation of the Poisson equation. The Poisson equation is given as always as

∇2𝑢(𝑥) = 𝑓(𝑥), for 𝑥 ∈ Ω, (2.10)

but now we recast the problem into a mixed formulation

𝜎(𝑥) −∇𝑢(𝑥) = 0, for 𝑥 ∈ Ω,

∇ · 𝜎(𝑥) = 𝑓(𝑥), for 𝑥 ∈ Ω.

where we solve for the vector 𝜎 and scalar 𝑢 simultaneously. The domain Ω is taken as a multidimensional Cartesian
product Ω = [−1, 1] × [0, 2𝜋], but the code is more or less identical for a 3D problem. For boundary conditions we
use Dirichlet in the 𝑥-direction and periodicity in the 𝑦-direction:

𝑢(±1, 𝑦) = 0

𝑢(𝑥, 2𝜋) = 𝑢(𝑥, 0)

Note that there is no boundary condition on 𝜎, only on 𝑢. For this reason we choose a Dirichlet basis 𝑆𝐷 for 𝑢 and
a regular Legendre or Chebyshev 𝑆𝑇 basis for 𝜎. With 𝐾0 representing the function space in the periodic direction,

12 Chapter 2. Getting started

https://github.com/spectralDNS/shenfun/blob/master/demo/unitdisc_helmholtz.py
https://github.com/spectralDNS/shenfun/blob/master/demo/unitdisc_biharmonic.py
https://github.com/spectralDNS/shenfun/blob/master/demo/pipe_poisson.py
https://github.com/spectralDNS/shenfun/blob/master/demo/unitdisc_biharmonic2NP.py
https://github.com/spectralDNS/shenfun/blob/master/demo/sphere_helmholtz.py
https://github.com/spectralDNS/shenfun/blob/master/binder/torus.ipynb

Shenfun Documentation, Release 2.2.2

we get the relevant 2D tensor product spaces as 𝑇𝐷 = 𝑆𝐷 ⊗𝐾0 and 𝑇𝑇 = 𝑆𝑇 ⊗𝐾0. Since 𝜎 is a vector we use a
VectorTensorProductSpace 𝑉 𝑇 = 𝑇𝑇 ×𝑇𝑇 and finally a MixedTensorProductSpace𝑄 = 𝑉 𝑇 ×𝑇𝐷
for the coupled and implicit treatment of (𝜎, 𝑢):

from shenfun import VectorTensorProductSpace, MixedTensorProductSpace
N, M = (16, 24)
family = 'Legendre'
SD = Basis(N[0], family, bc=(0, 0))
ST = Basis(N[0], family)
K0 = Basis(N[1], 'Fourier', dtype='d')
TD = TensorProductSpace(comm, (SD, K0), axes=(0, 1))
TT = TensorProductSpace(comm, (ST, K0), axes=(0, 1))
VT = VectorTensorProductSpace(TT)
Q = MixedTensorProductSpace([VT, TD])

In variational form the problem reads: find (𝜎, 𝑢) ∈ 𝑄 such that

(𝜎, 𝜏)𝑤 − (∇𝑢, 𝜏)𝑤 = 0, ∀𝜏 ∈ 𝑉 𝑇,

(∇ · 𝜎, 𝑣)𝑤 = (𝑓, 𝑣)𝑤 ∀𝑣 ∈ 𝑇𝐷
(2.11)

To implement this we use code that is very similar to regular, uncoupled problems. We create test and trialfunction:

gu = TrialFunction(Q)
tv = TestFunction(Q)
sigma, u = gu
tau, v = tv

and use these to assemble all blocks of the variational form (2.11):

Assemble equations
A00 = inner(sigma, tau)
if family.lower() == 'legendre':

A01 = inner(u, div(tau))
else:

A01 = inner(-grad(u), tau)
A10 = inner(div(sigma), v)

Note that we here can use integration by parts for Legendre, since the weight function is a constant, and as such get
the term (−∇𝑢, 𝜏)𝑤 = (𝑢,∇ · 𝜏)𝑤 (boundary term is zero due to homogeneous Dirichlet boundary conditions).

We collect all assembled terms in a BlockMatrix:

from shenfun import BlockMatrix
H = BlockMatrix(A00+A01+A10)

This block matrix H is then simply (for Legendre)[︂
(𝜎, 𝜏)𝑤 (𝑢,∇ · 𝜏)𝑤

(∇ · 𝜎, 𝑣)𝑤 0

]︂
(2.12)

Note that each item in (2.12) is a collection of instances of the TPMatrix class, and for similar reasons as given
around (2.4), we get also here one regular block matrix for each Fourier wavenumber. The sparsity pattern is the same
for all matrices except for wavenumber 0. The (highly sparse) sparsity pattern for block matrix 𝐻 with wavenumber
̸= 0 is shown in the image below

2.5. Coupled problems 13

Shenfun Documentation, Release 2.2.2

A complete demo for the coupled problem discussed here can be found in MixedPoisson.py and a 3D version is in
MixedPoisson3D.py.

2.6 Integrators

The integrators module contains some interator classes that can be used to integrate a solution forward in time.
However, for now these integrators are only implemented for purely Fourier tensor product spaces. There are currently
3 different integrator classes

• RK4: Runge-Kutta fourth order

• ETD: Exponential time differencing Euler method

• ETDRK4: Exponential time differencing Runge-Kutta fourth order

See, e.g., H. Montanelli and N. Bootland “Solving periodic semilinear PDEs in 1D, 2D and 3D with exponential
integrators”, https://arxiv.org/pdf/1604.08900.pdf

Integrators are set up to solve equations like

𝜕𝑢

𝜕𝑡
= 𝐿𝑢+𝑁(𝑢) (2.13)

where 𝑢 is the solution, 𝐿 is a linear operator and 𝑁(𝑢) is the nonlinear part of the right hand side.

14 Chapter 2. Getting started

https://github.com/spectralDNS/shenfun/blob/master/demo/MixedPoisson.py
https://github.com/spectralDNS/shenfun/blob/master/demo/MixedPoisson3D.py
https://arxiv.org/pdf/1604.08900.pdf

Shenfun Documentation, Release 2.2.2

To illustrate, we consider the time-dependent 1-dimensional Kortveeg-de Vries equation

𝜕𝑢

𝜕𝑡
+
𝜕3𝑢

𝜕𝑥3
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0

which can also be written as

𝜕𝑢

𝜕𝑡
+
𝜕3𝑢

𝜕𝑥3
+

1

2

𝜕𝑢2

𝜕𝑥
= 0

We neglect boundary issues and choose a periodic domain [0, 2𝜋] with Fourier exponentials as test functions. The
initial condition is chosen as

𝑢(𝑥, 𝑡 = 0) = 3𝐴2/ cosh(0.5𝐴(𝑥− 𝜋 + 2))2 + 3𝐵2/ cosh(0.5𝐵(𝑥− 𝜋 + 1))2 (2.14)

where 𝐴 and 𝐵 are constants. For discretization in space we use the basis 𝑉𝑁 = 𝑠𝑝𝑎𝑛{𝑒𝑥𝑝(𝚤𝑘𝑥)}𝑁𝑘=0 and formulate
the variational problem: find 𝑢 ∈ 𝑉𝑁 such that

𝜕

𝜕𝑡

(︁
𝑢, 𝑣
)︁

= −
(︁𝜕3𝑢
𝜕𝑥3

, 𝑣
)︁
−
(︁1

2

𝜕𝑢2

𝜕𝑥
, 𝑣
)︁
, ∀𝑣 ∈ 𝑉𝑁

We see that the first term on the right hand side is linear in 𝑢, whereas the second term is nonlinear. To implement this
problem in shenfun we start by creating the necessary basis and test and trial functions

import numpy as np
from shenfun import *

N = 256
T = Basis(N, 'F', dtype='d')
u = TrialFunction(T)
v = TestFunction(T)
u_ = Array(T)
u_hat = Function(T)

We then create two functions representing the linear and nonlinear part of (2.13):

def LinearRHS(**params):
return -inner(Dx(u, 0, 3), v)

k = T.wavenumbers(scaled=True, eliminate_highest_freq=True)
def NonlinearRHS(u, u_hat, rhs, **params):

rhs.fill(0)
u_[:] = T.backward(u_hat, u_)
rhs = T.forward(-0.5*u_**2, rhs)
return rhs*1j*k # return inner(grad(-0.5*Up**2), v)

Note that we differentiate in NonlinearRHS by using the wavenumbers k directly. Alternative notation, that is given
in commented out text, is slightly slower, but the results are the same.

The solution vector u_ needs also to be initialized according to (2.14)

A = 25.
B = 16.
x = T.points_and_weights()[0]
u_[:] = 3*A**2/np.cosh(0.5*A*(x-np.pi+2))**2 + 3*B**2/np.cosh(0.5*B*(x-np.pi+1))**2
u_hat = T.forward(u_, u_hat)

Finally we create an instance of the ETDRK4 solver, and integrate forward with a given timestep

2.6. Integrators 15

Shenfun Documentation, Release 2.2.2

dt = 0.01/N**2
end_time = 0.006
integrator = ETDRK4(T, L=LinearRHS, N=NonlinearRHS)
integrator.setup(dt)
u_hat = integrator.solve(u_, u_hat, dt, (0, end_time))

The solution is two waves travelling through eachother, seemingly undisturbed.

2.7 MPI

Shenfun makes use of the Message Passing Interface (MPI) to solve problems on distributed memory architectures.
OpenMP is also possible to enable for FFTs.

Dataarrays in Shenfun are distributed using a new and completely generic method, that allows for any index of a
multidimensional array to be distributed. To illustrate, lets consider a TensorProductSpace of three dimensions,
such that the arrays living in this space will be 3-dimensional. We create two spaces that are identical, except from
the MPI decomposition, and we use 4 CPUs (mpirun -np 4 python mpitest.py, if we store the code in this
section as mpitest.py):

from shenfun import *
from mpi4py import MPI
from mpi4py_fft import generate_xdmf
comm = MPI.COMM_WORLD
N = (20, 40, 60)
K0 = Basis(N[0], 'F', dtype='D', domain=(0, 1))
K1 = Basis(N[1], 'F', dtype='D', domain=(0, 2))
K2 = Basis(N[2], 'F', dtype='d', domain=(0, 3))

(continues on next page)

16 Chapter 2. Getting started

https://arxiv.org/abs/1804.09536

Shenfun Documentation, Release 2.2.2

(continued from previous page)

T0 = TensorProductSpace(comm, (K0, K1, K2), axes=(0, 1, 2), slab=True)
T1 = TensorProductSpace(comm, (K0, K1, K2), axes=(1, 0, 2), slab=True)

Here the keyword slab determines that only one index set of the 3-dimensional arrays living in T0 or T1 should
be distributed. The defaul is to use two, which corresponds to a so-called pencil decomposition. The axes-keyword
determines the order of which transforms are conducted, starting from last to first in the given tuple. Note that T0
now will give arrays in real physical space that are distributed in the first index, whereas T1 will give arrays that are
distributed in the second. This is because 0 and 1 are the first items in the tuples given to axes.

We can now create some Arrays on these spaces:

u0 = Array(T0, val=comm.Get_rank())
u1 = Array(T1, val=comm.Get_rank())

such that u0 and u1 have values corresponding to their communicating processors rank in the COMM_WORLD group
(the group of all CPUs).

Note that both the TensorProductSpaces have functions with expansion

𝑢(𝑥, 𝑦, 𝑧) =

𝑁/2−1∑︁
𝑛=−𝑁/2

𝑁/2−1∑︁
𝑚=−𝑁/2

𝑁/2−1∑︁
𝑙=−𝑁/2

𝑢̂𝑙,𝑚,𝑛𝑒
𝚤(𝑙𝑥+𝑚𝑦+𝑛𝑧). (2.15)

where 𝑢(𝑥, 𝑦, 𝑧) is the continuous solution in real physical space, and 𝑢̂ are the spectral expansion coefficients. If we
evaluate expansion (2.15) on the real physical mesh, then we get

𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) =

𝑁/2−1∑︁
𝑛=−𝑁/2

𝑁/2−1∑︁
𝑚=−𝑁/2

𝑁/2−1∑︁
𝑙=−𝑁/2

𝑢̂𝑙,𝑚,𝑛𝑒
𝚤(𝑙𝑥𝑖+𝑚𝑦𝑗+𝑛𝑧𝑘). (2.16)

The function 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) corresponds to the arrays u0, u1, whereas we have not yet computed the array 𝑢̂. We
could get 𝑢̂ as:

u0_hat = Function(T0)
u0_hat = T0.forward(u0, u0_hat)

Now, u0 and u1 have been created on the same mesh, which is a structured mesh of shape (20, 40, 60). However,
since they have different MPI decomposition, the values used to fill them on creation will differ. We can visualize the
arrays in Paraview using some postprocessing tools, to be further described in Sec Postprocessing:

u0.write('myfile.h5', 'u0', 0, domain=T0.mesh())
u1.write('myfile.h5', 'u1', 0, domain=T1.mesh())
if comm.Get_rank() == 0:

generate_xdmf('myfile.h5')

And when the generated myfile.xdmf is opened in Paraview, we can see the different distributions. The function
u0 is shown first, and we see that it has different values along the short first dimension. The second figure is evidently
distributed along the second dimension. Both arrays are non-distributed in the third and final dimension, which is
fortunate, because this axis will be the first to be transformed in, e.g., u0_hat = T0.forward(u0, u0_hat).

2.7. MPI 17

Shenfun Documentation, Release 2.2.2

We can now decide to distribute not just one, but the first two axes using a pencil decomposition instead. This is
achieved simply by dropping the slab keyword:

T2 = TensorProductSpace(comm, (K0, K1, K2), axes=(0, 1, 2))
u2 = Array(T2, val=comm.Get_rank())
u2.write('pencilfile.h5', 'u2', 0)
if comm.Get_rank() == 0:

generate_xdmf('pencilfile.h5')

Running again with 4 CPUs the array u2 will look like:

The local slices into the global array may be obtained through:

>>> print(comm.Get_rank(), T2.local_slice(False))
0 [slice(0, 10, None), slice(0, 20, None), slice(0, 60, None)]

(continues on next page)

18 Chapter 2. Getting started

Shenfun Documentation, Release 2.2.2

(continued from previous page)

1 [slice(0, 10, None), slice(20, 40, None), slice(0, 60, None)]
2 [slice(10, 20, None), slice(0, 20, None), slice(0, 60, None)]
3 [slice(10, 20, None), slice(20, 40, None), slice(0, 60, None)]

In spectral space the distribution will be different. This is because the discrete Fourier transforms are performed one
axis at the time, and for this to happen the dataarrays need to be realigned to get entire axis available for each processor.
Naturally, for the array in the pencil example (see image), we can only perform an FFT over the third and longest axis,
because only this axis is locally available to all processors. To do the other directions, the dataarray must be realigned
and this is done internally by the TensorProductSpace class. The shape of the datastructure in spectral space,
that is the shape of 𝑢̂, can be obtained as:

>>> print(comm.Get_rank(), T2.local_slice(True))
0 [slice(0, 20, None), slice(0, 20, None), slice(0, 16, None)]
1 [slice(0, 20, None), slice(0, 20, None), slice(16, 31, None)]
2 [slice(0, 20, None), slice(20, 40, None), slice(0, 16, None)]
3 [slice(0, 20, None), slice(20, 40, None), slice(16, 31, None)]

Evidently, the spectral space is distributed in the last two axes, whereas the first axis is locally avalable to all processors.
Tha dataarray is said to be aligned in the first dimension.

2.7. MPI 19

Shenfun Documentation, Release 2.2.2

20 Chapter 2. Getting started

CHAPTER

THREE

POST PROCESSING

MPI is great because it means that you can run Shenfun on pretty much as many CPUs as you can get your hands on.
However, MPI makes it more challenging to do visualization, in particular with Python and Matplotlib. For this reason
there is a utilities module with helper classes for dumping dataarrays to HDF5 or NetCDF

Most of the IO has already been implemented in mpi4py-fft. The classes HDF5File and NCFile are used exactly
as they are implemented in mpi4py-fft. As a common interface we provide

• ShenfunFile()

where ShenfunFile() returns an instance of either HDF5File or NCFile, depending on choice of backend.

For example, to create an HDF5 writer for a 3D TensorProductSpace with Fourier bases in all directions:

from shenfun import *
from mpi4py import MPI
N = (24, 25, 26)
K0 = Basis(N[0], 'F', dtype='D')
K1 = Basis(N[1], 'F', dtype='D')
K2 = Basis(N[2], 'F', dtype='d')
T = TensorProductSpace(MPI.COMM_WORLD, (K0, K1, K2))
fl = ShenfunFile('myh5file', T, backend='hdf5', mode='w')

The file instance fl will now have two method that can be used to either write dataarrays to file, or read them back
again.

• fl.write

• fl.read

With the HDF5 backend we can write both arrays from physical space (Array), as well as spectral space
(Function). However, the NetCDF4 backend cannot handle complex dataarrays, and as such it can only be used
for real physical dataarrays.

In addition to storing complete dataarrays, we can also store any slices of the arrays. To illustrate, this is how to store
three snapshots of the u array, along with some global 2D and 1D slices:

u = Array(T)
u[:] = np.random.random(u.shape)
d = {'u': [u, (u, np.s_[4, :, :]), (u, np.s_[4, 4, :])]}
fl.write(0, d)
u[:] = 2
fl.write(1, d)

The ShenfunFile may also be used for the MixedTensorProductSpace, or
VectorTensorProductSpace, that are collections of the scalar TensorProductSpace. We can cre-
ate a MixedTensorProductSpace consisting of two TensorProductSpaces, and an accompanying writer class
as:

21

https://www.hdf5.org
https://www.unidata.ucar.edu/software/netcdf/
https://mpi4py-fft.readthedocs.io/en/latest/io.html

Shenfun Documentation, Release 2.2.2

TT = MixedTensorProductSpace([T, T])
fl_m = ShenfunFile('mixed', TT, backend='hdf5', mode='w')

Let’s now consider a transient problem where we step a solution forward in time. We create a solution array from the
Array class, and update the array inside a while loop:

TT = VectorTensorProductSpace(T)
fl_m = ShenfunFile('mixed', TT, backend='hdf5', mode='w')
u = Array(TT)
tstep = 0
du = {'uv': (u,

(u, [4, slice(None), slice(None)]),
(u, [slice(None), 10, 10]))}

while tstep < 3:
fl_m.write(tstep, du, forward_output=False)
tstep += 1

Note that on each time step the arrays u, (u, [4, slice(None), slice(None)]) and (u,
[slice(None), 10, 10]) are vectors, and as such of global shape (3, 24, 25, 26), (3, 25, 26)
and (3, 25), respectively. However, they are stored in the hdf5 file under their spatial dimensions 1D, 2D and 3D,
respectively.

Note that the slices in the above dictionaries are global views of the global arrays, that may or may not be distributed
over any number of processors. Also note that these routines work with any number of CPUs, and the number of CPUs
does not need to be the same when storing or retrieving the data.

After running the above, the different arrays will be found in groups stored in myyfile.h5 with directory tree structure
as:

myh5file.h5/
u/

1D/
| 4_4_slice/
| 0
| 1

2D/
| 4_slice_slice/
| 0
| 1

3D/
| 0
| 1

mesh/
x0
x1
x2

Likewise, the mixed.h5 file will at the end of the loop look like:

mixed.h5/
uv/

1D/
| slice_10_10/
| 0
| 1
| 3

2D/

(continues on next page)

22 Chapter 3. Post processing

Shenfun Documentation, Release 2.2.2

(continued from previous page)

| 4_slice_slice/
| 0
| 1
| 3

3D/
| 0
| 1
| 3

mesh/
x0
x1
x2

Note that the mesh is stored as well as the results. The three mesh arrays are all 1D arrays, representing the domain
for each basis in the TensorProductSpace.

With NetCDF4 the layout is somewhat different. For mixed above, if we were using backend netcdf instead of
hdf5, we would get a datafile where ncdump -h mixed.nc would result in:

netcdf mixed {
dimensions:

time = UNLIMITED ; // (3 currently)
i = 3 ;
x = 24 ;
y = 25 ;
z = 26 ;

variables:
double time(time) ;
double i(i) ;
double x(x) ;
double y(y) ;
double z(z) ;
double uv(time, i, x, y, z) ;
double uv_4_slice_slice(time, i, y, z) ;
double uv_slice_10_10(time, i, x) ;

}

Note that it is also possible to store vector arrays as scalars. For NetCDF4 this is necessary for direct visualization
using Visit. To store vectors as scalars, simply use:

fl_m.write(tstep, du, forward_output=False, as_scalar=True)

3.1 ParaView

The stored datafiles can be visualized in ParaView. However, ParaView cannot understand the content of these HDF5-
files without a little bit of help. We have to explain that these data-files contain structured arrays of such and such
shape. The way to do this is through the simple XML descriptor XDMF. To this end there is a function imported from
mpi4py-fft called generate_xdmf that can be called with any one of the generated hdf5-files:

generate_xdmf('myh5file.h5')
generate_xdmf('mixed.h5')

This results in some light xdmf-files being generated for the 2D and 3D arrays in the hdf5-file:

• myh5file.xdmf

3.1. ParaView 23

https://www.visitusers.org
www.paraview.org
www.xdmf.org
https://bitbucket.org/mpi4py/mpi4py-fft

Shenfun Documentation, Release 2.2.2

• myh5file_4_slice_slice.xdmf

• mixed.xdmf

• mixed_4_slice_slice.xdmf

These xdmf-files can be opened and inspected by ParaView. Note that 1D arrays are not wrapped, and neither are 4D.

An annoying feature of Paraview is that it views a three-dimensional array of shape (𝑁0, 𝑁1, 𝑁2) as transposed
compared to shenfun. That is, for Paraview the last axis represents the 𝑥-axis, whereas shenfun (like most others)
considers the first axis to be the 𝑥-axis. So when opening a three-dimensional array in Paraview one needs to be
aware. Especially when plotting vectors. Assume that we are working with a Navier-Stokes solver and have a three-
dimensional VectorTensorProductSpace to represent the fluid velocity:

from mpi4py import MPI
from shenfun import *

comm = MPI.COMM_WORLD
N = (32, 64, 128)
V0 = Basis(N[0], 'F', dtype='D')
V1 = Basis(N[1], 'F', dtype='D')
V2 = Basis(N[2], 'F', dtype='d')
T = TensorProductSpace(comm, (V0, V1, V2))
TV = VectorTensorProductSpace(T)
U = Array(TV)
U[0] = 0
U[1] = 1
U[2] = 2

To store the resulting Array U we can create an instance of the HDF5File class, and store using keyword
as_scalar=True:

hdf5file = ShenfunFile("NS", TV, backend='hdf5', mode='w')
...
file.write(0, {'u': [U]}, as_scalar=True)
file.write(1, {'u': [U]}, as_scalar=True)

Alternatively, one may store the arrays directly as:

U.write('U.h5', 'u', 0, domain=T.mesh(), as_scalar=True)
U.write('U.h5', 'u', 1, domain=T.mesh(), as_scalar=True)

Generate an xdmf file through:

generate_xdmf('NS.h5')

and open the generated NS.xdmf file in Paraview. You will then see three scalar arrays u0, u1, u2, each one of
shape (32, 64, 128), for the vector component in what Paraview considers the 𝑧, 𝑦 and 𝑥 directions, respectively.
Other than the swapped coordinate axes there is no difference. But be careful if creating vectors in Paraview with the
Calculator. The vector should be created as:

u0*kHat+u1*jHat+u2*iHat

24 Chapter 3. Post processing

CHAPTER

FOUR

INSTALLATION

Shenfun has a few dependencies

• mpi4py

• FFTW

• mpi4py-fft

• cython

• numpy

• sympy

• scipy

• h5py

that are mostly straight-forward to install, or already installed in most Python environments. The first two are usually
most troublesome. Basically, for mpi4py you need to have a working MPI installation, whereas FFTW is available
on most high performance computer systems. If you are using conda, then all you need to install a fully functional
shenfun, with all the above dependencies, is

conda install -c conda-forge shenfun

You probably want to install into a fresh environment, though, which can be achieved with

conda create --name shenfun -c conda-forge shenfun
conda activate shenfun

Note that this gives you shenfun with default settings. This means that you will probably get the openmpi backend.
To make sure that shenfun is is installed with mpich instead do

conda create --name shenfun -c conda-forge shenfun mpich

If you do not use conda, then you need to make sure that MPI and FFTW are installed by some other means. You can
then install any version of shenfun hosted on pypi using pip

pip install shenfun

whereas the following will install the latest version from github

pip install git+https://github.com/spectralDNS/shenfun.git@master

Note that a common approach is to install shenfun from conda-forge to get all the dependencies, and then build
a local version by (after cloning or forking to a local folder) running from the top directory

25

https://bitbucket.org/mpi4py/mpi4py
http://www.fftw.org
https://bitbucket.org/mpi4py/mpi4py-fft
http://cython.org
https://www.numpy.org
https://www.sympy.org
https://www.scipy.org
https://www.h5py.org
https://bitbucket.org/mpi4py/mpi4py
http://www.fftw.org
https://conda.io/docs/
https://conda.io/docs/
https://pypi.org/project/shenfun/
https://pypi.org/project/pip/

Shenfun Documentation, Release 2.2.2

pip install .

or

python setup.py build_ext -i

This is required to build all the Cython dependencies locally.

4.1 Optimization

Shenfun contains a few routines (essentially linear algebra solvers and matrix vector products) that are difficult to
vectorize with numpy, and for this reason they have been implemented in either (or both of) Numba or Cython. The
user may choose which implementation to use through the environment variable SHENFUN_OPTIMIZATION. The
default is to use cython, but it is possible to enable either one by making the appropriate choice in the active terminal

export SHENFUN_OPTIMIZATION={CYTHON,NUMBA}

4.2 Additional dependencies

For storing and retrieving data you need either HDF5 or netCDF4, compiled with support for MPI (see Postprocessing).
Both HDF5 and netCDF4 are already available with parallel support on conda-forge, and, if they were not installed at
the same time as shenfun, they can be installed as

conda install -c conda-forge h5py=*=mpi* netcdf4=*=mpi*

Note that parallel HDF5 and NetCDF4 often are available as modules on supercomputers. Otherwise, see the respective
packages for how to install with support for MPI.

Some of the plots in the Demos are created using the matplotlib library. Matplotlib is not a required dependency, but
it may be easily installed from conda using

conda install matplotlib

4.3 Test installation

After installing (from source) it may be a good idea to run all the tests located in the tests folder. The tests are run with
pytest from the main directory of the source code

python -m pytest tests/

However, note that for conda you need to install pytest into the correct environment as well. A common mistake is
to run a version of pytest that has already been installed in a different conda environment, perhaps using a different
Python version.

The tests are run automatically on every commit to github, see

26 Chapter 4. Installation

https://www.numba.org
http://cython.org
https://www.hdfgroup.org
http://unidata.github.io/netcdf4-python/
https://www.hdfgroup.org
http://unidata.github.io/netcdf4-python/
https://conda-forge.org
https://matplotlib.org
https://github.com/spectralDNS/shenfun/tree/master/tests
https://docs.pytest.org/en/latest/
https://dev.azure.com/spectralDNS/shenfun
https://github.com/spectralDNS/shenfun

CHAPTER

FIVE

HOW TO CITE?

Please cite shenfun using

@inproceedings{shenfun,
author = {Mortensen, Mikael},
booktitle = {MekIT'17 - Ninth national conference on Computational Mechanics},
isbn = {978-84-947311-1-2},
pages = {273--298},
archivePrefix = "arXiv",
eprint = {1708.03188},
publisher = {International Center for Numerical Methods in Engineering (CIMNE)},
title = {Shenfun - automating the spectral Galerkin method},
editor = {Skallerud, Bjorn Helge and Andersson, Helge Ingolf},
year = {2017}

}
@article{mortensen_joss,

author = {Mortensen, Mikael},
year = 2018,
title = {Shenfun: High performance spectral Galerkin computing platform},
journal = {Journal of Open Source Software},
volume = 3,
number = 31,
pages = 1071,
doi = https://doi.org/10.21105/joss.01071

}

27

Shenfun Documentation, Release 2.2.2

28 Chapter 5. How to cite?

CHAPTER

SIX

HOW TO CONTRIBUTE?

Shenfun is an open source project and anyone is welcome to contribute. An easy way to get started is by suggesting
a new enhancement on the issue tracker. If you have found a bug, then either report this on the issue tracker, er even
better, make a fork of the repository, fix the bug and then create a pull request to get the fix into the master branch.

If you have a particularily interesting application, then we are very interested in pull requests that are adding new demo
programs. If you feel like adding an extended demo, then have a look at the examples in the docs/demos folder. Note
that extended demos are written using doconce.

29

https://github.com/spectralDNS/shenfun/issues
https://github.com/spectralDNS/shenfun/pulls
https://github.com/spectralDNS/shenfun/tree/master/docs/demos
http://hplgit.github.io/doconce/doc/web/index.html

Shenfun Documentation, Release 2.2.2

30 Chapter 6. How to contribute?

CHAPTER

SEVEN

DEMOS

7.1 Demo - 1D Poisson’s equation

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. This is a demonstration of how the Python module shenfun can be used to solve Poisson’s equation with
Dirichlet boundary conditions in one dimension. Spectral convergence, as shown in Figure Convergence of 1D Poisson
solvers for both Legendre and Chebyshev modified basis function, is demonstrated. The demo is implemented in a
single Python file dirichlet_poisson1D.py, and the numerical method is is described in more detail by J. Shen [She94]
and [She95].

Fig. 1: Convergence of 1D Poisson solvers for both Legendre and Chebyshev modified basis function

31

https://github.com/spectralDNS/shenfun
https://github.com/spectralDNS/shenfun/blob/master/demo/dirichlet_poisson1D.py

Shenfun Documentation, Release 2.2.2

7.1.1 Model problem

Poisson’s equation

Poisson’s equation is given as

∇2𝑢(𝑥) = 𝑓(𝑥) for 𝑥 ∈ [−1, 1], (7.1)

𝑢(−1) = 𝑎, 𝑢(1) = 𝑏,

where 𝑢(𝑥) is the solution, 𝑓(𝑥) is a function and 𝑎, 𝑏 are two possibly non-zero constants.

To solve Eq. (7.1) with the Galerkin method we need smooth continuously differentiable basis functions, 𝑣𝑘, that
satisfy the given boundary conditions. And then we look for solutions like

𝑢(𝑥) =

𝑁−1∑︁
𝑘=0

𝑢̂𝑘𝑣𝑘(𝑥), (7.2)

where 𝑁 is the size of the discretized problem, û = {𝑢̂𝑘}𝑁−1
𝑘=0 are the unknown expansion coefficients, and the basis

is span{𝑣𝑘}𝑁−1
𝑘=0 .

The basis functions can, for example, be constructed from Chebyshev, 𝑇𝑘(𝑥), or Legendre, 𝐿𝑘(𝑥), polynomials and
we use the common notation 𝜑𝑘(𝑥) to represent either one of them. It turns out that it is easiest to use basis functions
with homogeneous Dirichlet boundary conditions

𝑣𝑘(𝑥) = 𝜑𝑘(𝑥) − 𝜑𝑘+2(𝑥), (7.3)

for 𝑘 = 0, 1, . . . 𝑁−3. This gives the basis 𝑉 𝑁
0 = span{𝑣𝑘(𝑥)}𝑁−3

𝑘=0 . We can then add two more linear basis functions
(that belong to the kernel of Poisson’s equation)

𝑣𝑁−2 =
1

2
(𝜑0 − 𝜑1), (7.4)

𝑣𝑁−1 =
1

2
(𝜑0 + 𝜑1). (7.5)

which gives the inhomogeneous basis 𝑉 𝑁 = span{𝑣𝑘}𝑁−1
𝑘=0 . With the two linear basis functions it is easy to see that

the last two degrees of freedom, 𝑢̂𝑁−2 and 𝑢̂𝑁−1, now are given as

𝑢(−1) =
𝑁−1∑︁
𝑘=0

𝑢̂𝑘𝑣𝑘(−1) = 𝑢̂𝑁−2 = 𝑎, (7.6)

𝑢(+1) =

𝑁−1∑︁
𝑘=0

𝑢̂𝑘𝑣𝑘(+1) = 𝑢̂𝑁−1 = 𝑏, (7.7)

and, as such, we only have to solve for {𝑢̂𝑘}𝑁−3
𝑘=0 , just like for a problem with homogeneous boundary conditions (for

homogeneous boundary condition we simply have 𝑢̂𝑁−2 = 𝑢̂𝑁−1 = 0). We now formulate a variational problem
using the Galerkin method: Find 𝑢 ∈ 𝑉 𝑁 such that∫︁ 1

−1

∇2𝑢 𝑣 𝑤 𝑑𝑥 =

∫︁ 1

−1

𝑓 𝑣 𝑤 𝑑𝑥 ∀𝑣 ∈ 𝑉 𝑁
0 . (7.8)

Note that since we only have 𝑁 − 3 unknowns we are only using the homogeneous test functions from 𝑉 𝑁
0 .

The weighted integrals, weighted by 𝑤(𝑥), are called inner products, and a common notation is∫︁ 1

−1

𝑢 𝑣 𝑤 𝑑𝑥 = (𝑢, 𝑣)𝑤 . (7.9)

32 Chapter 7. Demos

https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://en.wikipedia.org/wiki/Legendre_polynomials

Shenfun Documentation, Release 2.2.2

The integral can either be computed exactly, or with quadrature. The advantage of the latter is that it is generally faster,
and that non-linear terms may be computed just as quickly as linear. For a linear problem, it does not make much of a
difference, if any at all. Approximating the integral with quadrature, we obtain∫︁ 1

−1

𝑢 𝑣 𝑤 𝑑𝑥 ≈ (𝑢, 𝑣)
𝑁
𝑤 ,

≈
𝑁−1∑︁
𝑗=0

𝑢(𝑥𝑗)𝑣(𝑥𝑗)𝑤(𝑥𝑗),

where {𝑤(𝑥𝑗)}𝑁−1
𝑗=0 are quadrature weights. The quadrature points {𝑥𝑗}𝑁−1

𝑗=0 are specific to the chosen basis, and even
within basis there are two different choices based on which quadrature rule is selected, either Gauss or Gauss-Lobatto.

Inserting for test and trialfunctions, we get the following bilinear form and matrix 𝐴 ∈ R𝑁−3×𝑁−3 for the Laplacian
(using the summation convention in step 2)

(︀
∇2𝑢, 𝑣

)︀𝑁
𝑤

=

(︃
∇2

𝑁−3∑︁
𝑘=0

𝑢̂𝑘𝑣𝑘, 𝑣𝑗

)︃𝑁

𝑤

, 𝑗 = 0, 1, . . . , 𝑁 − 3

=
(︀
∇2𝑣𝑘, 𝑣𝑗

)︀𝑁
𝑤
𝑢̂𝑘,

= 𝑎𝑗𝑘𝑢̂𝑘.

Note that the sum in 𝑎𝑗𝑘𝑢̂𝑘 runs over 𝑘 = 0, 1, . . . , 𝑁 − 3 since the second derivatives of 𝑣𝑁−1 and 𝑣𝑁 are zero. The
right hand side linear form and vector is computed as 𝑓𝑗 = (𝑓, 𝑣𝑗)

𝑁
𝑤 , for 𝑗 = 0, 1, . . . , 𝑁 − 3, where a tilde is used

because this is not a complete transform of the function 𝑓 , but only an inner product.

The linear system of equations to solve for the expansion coefficients of 𝑢(𝑥) is given as

𝐴û = f̃ . (7.10)

Now, when the expansion coefficients û are found by solving this linear system, they may be transformed to real space
𝑢(𝑥) using (7.160), and here the contributions from 𝑢̂𝑁−2 and 𝑢̂𝑁−1 must be accounted for. Note that the matrix 𝐴
(different for Legendre or Chebyshev) has a very special structure that allows for a solution to be found very efficiently
in order of 𝒪(𝑁) operations, see [She94] and [She95]. These solvers are implemented in shenfun for both bases.

Method of manufactured solutions

In this demo we will use the method of manufactured solutions to demonstrate spectral accuracy of the shenfun
Dirichlet bases. To this end we choose an analytical function that satisfies the given boundary conditions:

𝑢𝑒(𝑥) = sin(𝑘𝜋𝑥)(1 − 𝑥2) + 𝑎(1 − 𝑥)/2 + 𝑏(1 + 𝑥)/2, (7.11)

where 𝑘 is an integer and 𝑎 and 𝑏 are constants. Now, feeding 𝑢𝑒 through the Laplace operator, we see that the last two
linear terms disappear, whereas the first term results in

∇2𝑢𝑒(𝑥) =
𝑑2𝑢𝑒
𝑑𝑥2

, (7.12)

= −4𝑘𝜋𝑥 cos(𝑘𝜋𝑥) − 2 sin(𝑘𝜋𝑥) − 𝑘2𝜋2(1 − 𝑥2) sin(𝑘𝜋𝑥). (7.13)

Now, setting 𝑓𝑒(𝑥) = ∇2𝑢𝑒(𝑥) and solving for ∇2𝑢(𝑥) = 𝑓𝑒(𝑥), we can compare the numerical solution 𝑢(𝑥) with
the analytical solution 𝑢𝑒(𝑥) and compute error norms.

7.1. Demo - 1D Poisson’s equation 33

Shenfun Documentation, Release 2.2.2

7.1.2 Implementation

Preamble

We will solve Poisson’s equation using the shenfun Python module. The first thing needed is then to import some of
this module’s functionality plus some other helper modules, like Numpy and Sympy:

from shenfun import inner, div, grad, TestFunction, TrialFunction, Function, \
project, Dx, Array, Basis

import numpy as np
from sympy import symbols, cos, sin, exp, lambdify

We use Sympy for the manufactured solution and Numpy for testing.

Manufactured solution

The exact solution 𝑢𝑒(𝑥) and the right hand side 𝑓𝑒(𝑥) are created using Sympy as follows

a = -1
b = 1
k = 4
x = symbols("x")
ue = sin(k*np.pi*x)*(1-x**2) + a*(1 - x)/2. + b*(1 + x)/2.
fe = ue.diff(x, 2)

These solutions are now valid for a continuous domain. The next step is thus to discretize, using a discrete mesh
{𝑥𝑗}𝑁−1

𝑗=0 and a finite number of basis functions.

Note that it is not mandatory to use Sympy for the manufactured solution. Since the solution is known (7.13), we could
just as well simply use Numpy to compute 𝑓𝑒 at {𝑥𝑗}𝑁−1

𝑗=0 . However, with Sympy it is much easier to experiment and
quickly change the solution.

Discretization

We create a basis with a given number of basis functions, and extract the computational mesh from the basis itself

N = 32
SD = Basis(N, 'Chebyshev', bc=(a, b))
#SD = Basis(N, 'Legendre', bc=(a, b))
X = SD.mesh(N)

Note that we can either choose a Legendre or a Chebyshev basis.

Variational formulation

The variational problem (7.124) can be assembled using shenfun’s TrialFunction, TestFunction and
inner() functions.

u = TrialFunction(SD)
v = TestFunction(SD)
Assemble left hand side matrix
A = inner(v, div(grad(u)))
Assemble right hand side
fj = Array(SD, buffer=fe)

(continues on next page)

34 Chapter 7. Demos

https://github.com/spectralDNS/shenfun
https://numpy.org
https://sympy.org

Shenfun Documentation, Release 2.2.2

(continued from previous page)

f_hat = Function(SD)
f_hat = inner(v, fj, output_array=f_hat)

Note that the sympy function fe can be used to initialize the Array fj. We wrap this Numpy array in an Array
class (fj = Array(SD, buffer=fe)), because an Array is required as input to the inner() function.

Solve linear equations

Finally, solve linear equation system and transform solution from spectral {𝑢̂𝑘}𝑁−1
𝑘=0 vector to the real space

{𝑢(𝑥𝑗)}𝑁−1
𝑗=0 and then check how the solution corresponds with the exact solution 𝑢𝑒. To this end we compute the

𝐿2-errornorm using the shenfun function dx()

u_hat = A.solve(f_hat)
uj = SD.backward(u_hat)
ue = Array(SD, buffer=ue)

print("Error=%2.16e" %(np.sqrt(dx((uj-ua)**2))))
assert np.allclose(uj, ue)

Convergence test

A complete solver is given in Sec. Complete solver. This solver is created such that it takes in two commandline
arguments and prints out the 𝐿2-errornorm of the solution in the end. We can use this to write a short script that
performs a convergence test. The solver is run like

>>> python dirichlet_poisson1D.py 32 legendre
Error=1.8132185245826562e-10

for a discretization of size 𝑁 = 32 and for the Legendre basis. Alternatively, change legendre to chebyshev for
the Chebyshev basis.

We set up the solver to run for a list of 𝑁 = [12, 16, . . . , 48], and collect the errornorms in arrays to be plotted. Such
a script can be easily created with the subprocess module

import subprocess

N = range(12, 50, 4)
error = {}
for basis in ('legendre', 'chebyshev'):

error[basis] = []
for i in range(len(N)):

output = subprocess.check_output("python dirichlet_poisson1D.py {} {}".
→˓format(N[i], basis), shell=True)

exec(output) # Error is printed as "Error=%2.16e"%(np.linalg.norm(uj-ua))
error[basis].append(Error)

The error can be plotted using matplotlib, and the generated figure is shown in the summary’s Fig. Convergence of 1D
Poisson solvers for both Legendre and Chebyshev modified basis function. The spectral convergence is evident and we
can see that after 𝑁 = 40 roundoff errors dominate as the errornorm trails off around 10−14.

import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))
for basis, col in zip(('legendre', 'chebyshev'), ('r', 'b')):

(continues on next page)

7.1. Demo - 1D Poisson’s equation 35

https://docs.python.org/3/library/subprocess.html
https://matplotlib.org

Shenfun Documentation, Release 2.2.2

(continued from previous page)

plt.semilogy(N, error[basis], col, linewidth=2)
plt.title('Convergence of Poisson solvers 1D')
plt.xlabel('N')
plt.ylabel('Error norm')
plt.savefig('poisson1D_errornorm.png')
plt.legend(('Legendre', 'Chebyshev'))
plt.show()

Complete solver

A complete solver, that can use either Legendre or Chebyshev bases, chosen as a command-line argument, can be
found here.

7.2 Demo - Cubic nonlinear Klein-Gordon equation

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. This is a demonstration of how the Python module shenfun can be used to solve the time-dependent,
nonlinear Klein-Gordon equation, in a triply periodic domain. The demo is implemented in a single Python file Klein-
Gordon.py, and it may be run in parallel using MPI. The Klein-Gordon equation is solved using a mixed formulation.
The discretization, and some background on the spectral Galerkin method is given first, before we turn to the actual
details of the shenfun implementation.

7.2.1 The nonlinear Klein-Gordon equation

Movie showing the evolution of the solution 𝑢 from Eq. (7.14), in a slice through the center of the domain, computed
with the code described in this demo.

Model equation

The cubic nonlinear Klein-Gordon equation is a wave equation important for many scientific applications such as solid
state physics, nonlinear optics and quantum field theory [Waz08]. The equation is given as

𝜕2𝑢

𝜕𝑡2
= ∇2𝑢− 𝛾(𝑢− 𝑢|𝑢|2) for𝑢 ∈ Ω, (7.14)

with initial conditions

𝑢(𝑥, 𝑡 = 0) = 𝑢0 and
𝜕𝑢(𝑥, 𝑡 = 0)

𝜕𝑡
= 𝑢0𝑡 . (7.15)

The spatial coordinates are here denoted as 𝑥 = (𝑥, 𝑦, 𝑧), and 𝑡 is time. The parameter 𝛾 = ±1 determines whether
the equations are focusing (+1) or defocusing (−1) (in the movie we have used 𝛾 = 1). The domain Ω = [−2𝜋, 2𝜋]3

is triply periodic and initial conditions will here be set as

𝑢0 = 0.1 exp (−𝑥 · 𝑥) , (7.16)

𝑢0𝑡 = 0. (7.17)

36 Chapter 7. Demos

https://github.com/spectralDNS/shenfun/blob/master/demo/dirichlet_poisson1D.py
https://github.com/spectralDNS/shenfun
https://github.com/spectralDNS/shenfun/blob/master/demo/KleinGordon.py
https://github.com/spectralDNS/shenfun/blob/master/demo/KleinGordon.py

Shenfun Documentation, Release 2.2.2

We will solve these equations using a mixed formulation and a spectral Galerkin method. The mixed formulation reads

𝜕𝑓

𝜕𝑡
= ∇2𝑢− 𝛾(𝑢− 𝑢|𝑢|2), (7.18)

𝜕𝑢

𝜕𝑡
= 𝑓. (7.19)

The energy of the solution can be computed as

𝐸(𝑢) =

∫︁
Ω

(︂
1

2
𝑓2 +

1

2
|∇𝑢|2 + 𝛾(

1

2
𝑢2 − 1

4
𝑢4)

)︂
𝑑𝑥 (7.20)

and it is crucial that this energy remains constant in time.

The movie (The nonlinear Klein-Gordon equation) is showing the solution 𝑢, computed with the code shown in the
bottom of Sec. Complete solver.

Spectral Galerkin formulation

The PDEs in (7.18) and (7.19) can be solved with many different numerical methods. We will here use the shenfun
software and this software makes use of the spectral Galerkin method. Being a Galerkin method, we need to reshape
the governing equations into proper variational forms, and this is done by multiplying (7.18) and (7.19) with the
complex conjugate of proper test functions and then integrating over the domain. To this end we use testfunctions
𝑔 ∈ 𝑉 (Ω) with Eq. (7.18) and 𝑣 ∈ 𝑉 (Ω) with Eq. (7.19), where 𝑉 (𝜔) is a suitable function space, and obtain

𝜕

𝜕𝑡

∫︁
Ω

𝑓 𝑔 𝑤 𝑑𝑥 =

∫︁
Ω

(︀
∇2𝑢− 𝛾(𝑢 − 𝑢|𝑢|2)

)︀
𝑔 𝑤 𝑑𝑥, (7.21)

𝜕

𝜕𝑡

∫︁
Ω

𝑢 𝑣 𝑤 𝑑𝑥 =

∫︁
Ω

𝑓 𝑣 𝑤 𝑑𝑥. (7.22)

Note that the overline is used to indicate a complex conjugate, and 𝑤 is a weight function associated with the test
functions. The functions 𝑓 and 𝑢 are now to be considered as trial functions, and the integrals over the domain are
often referred to as inner products. With inner product notation

(𝑢, 𝑣) =

∫︁
Ω

𝑢 𝑣 𝑤 𝑑𝑥.

and an integration by parts on the Laplacian, the variational problem can be formulated as:

𝜕

𝜕𝑡
(𝑓, 𝑔) = −(∇𝑢,∇𝑔) − 𝛾

(︀
𝑢− 𝑢|𝑢|2, 𝑔

)︀
, (7.23)

𝜕

𝜕𝑡
(𝑢, 𝑣) = (𝑓, 𝑣). (7.24)

The time and space discretizations are still left open. There are numerous different approaches that one could take
for discretizing in time, and the first two terms on the right hand side of (7.23) can easily be treated implicitly as
well as explicitly. However, the approach we will follow in Sec. (Runge-Kutta integrator) is a fully explicit 4th order
Runge-Kutta method.

Discretization

To find a numerical solution we need to discretize the continuous problem (7.23) and (7.24) in space as well as time.
Since the problem is triply periodic, Fourier exponentials are normally the best choice for trial and test functions, and
as such we use basis functions

𝜑𝑙(𝑥) = 𝑒𝚤𝑙𝑥, −∞ < 𝑙 <∞, (7.25)

7.2. Demo - Cubic nonlinear Klein-Gordon equation 37

https://github.com/spectralDNS/shenfun
https://en.wikipedia.org/wiki/Runge-Kutta_methods

Shenfun Documentation, Release 2.2.2

where 𝑙 is the wavenumber, and 𝑙 = 2𝜋
𝐿 𝑙 is the scaled wavenumber, scaled with domain length 𝐿 (here 4𝜋). Since we

want to solve these equations on a computer, we need to choose a finite number of test functions. A function space
𝑉 𝑁 can be defined as

𝑉 𝑁 (𝑥) = span{𝜑𝑙(𝑥)}𝑙∈𝑙, (7.26)

where 𝑁 is chosen as an even positive integer and 𝑙 = (−𝑁/2,−𝑁/2 + 1, . . . , 𝑁/2 − 1). And now, since Ω is a
three-dimensional domain, we can create tensor products of such bases to get, e.g., for three dimensions

𝑊𝑁 (𝑥, 𝑦, 𝑧) = 𝑉 𝑁 (𝑥) ⊗ 𝑉 𝑁 (𝑦) ⊗ 𝑉 𝑁 (𝑧), (7.27)

where 𝑁 = (𝑁,𝑁,𝑁). Obviously, it is not necessary to use the same number (𝑁) of basis functions for each
direction, but it is done here for simplicity. A 3D tensor product basis function is now defined as

Φ𝑙𝑚𝑛(𝑥, 𝑦, 𝑧) = 𝑒𝚤𝑙𝑥𝑒𝚤𝑚𝑦𝑒𝚤𝑛𝑧 = 𝑒𝚤(𝑙𝑥+𝑚𝑦+𝑛𝑧) (7.28)

where the indices for 𝑦- and 𝑧-direction are𝑚 = 2𝜋
𝐿 𝑚,𝑛 = 2𝜋

𝐿 𝑛, and 𝑚 and 𝑛 are the same as 𝑙 due to using the same
number of basis functions for each direction. One distinction, though, is that for the 𝑧-direction expansion coefficients
are only stored for 𝑛 = (0, 1, . . . , 𝑁/2) due to Hermitian symmetry (real input data).

We now look for solutions of the form

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =

𝑁/2−1∑︁
𝑛=−𝑁/2

𝑁/2−1∑︁
𝑚=−𝑁/2

𝑁/2−1∑︁
𝑙=−𝑁/2

𝑢̂𝑙𝑚𝑛(𝑡)Φ𝑙𝑚𝑛(𝑥, 𝑦, 𝑧). (7.29)

The expansion coefficients 𝑢̂ = {𝑢̂𝑙𝑚𝑛(𝑡)}(𝑙,𝑚,𝑛)∈𝑙×𝑚×𝑛 can be related directly to the solution 𝑢(𝑥, 𝑦, 𝑧, 𝑡) using
Fast Fourier Transforms (FFTs) if we are satisfied with obtaining the solution in quadrature points corresponding to

𝑥𝑖 =
4𝜋𝑖

𝑁
− 2𝜋 ∀ 𝑖 ∈ 𝑖,where 𝑖 = (0, 1, . . . , 𝑁 − 1), (7.30)

𝑦𝑗 =
4𝜋𝑗

𝑁
− 2𝜋 ∀ 𝑗 ∈ 𝑗,where 𝑗 = (0, 1, . . . , 𝑁 − 1), (7.31)

𝑧𝑘 =
4𝜋𝑘

𝑁
− 2𝜋 ∀ 𝑘 ∈ 𝑘,where𝑘 = (0, 1, . . . , 𝑁 − 1). (7.32)

Note that these points are different from the standard (like 2𝜋𝑗/𝑁) since the domain is set to [−2𝜋, 2𝜋]3 and not the
more common [0, 2𝜋]3. We have

𝑢 = ℱ−1
𝑘

(︀
ℱ−1

𝑗

(︀
ℱ−1

𝑖 (𝑢̂)
)︀)︀

(7.33)

with 𝑢 = {𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)}(𝑖,𝑗,𝑘)∈𝑖×𝑗×𝑘 and where ℱ−1
𝑖 is the inverse Fourier transform along the direction of index 𝑖,

for all (𝑗, 𝑘) ∈ 𝑗 × 𝑘. Note that the three inverse FFTs are performed sequentially, one direction at the time, and that
there is no scaling factor due to the definition used for the inverse Fourier transform

𝑢(𝑥𝑗) =

𝑁/2−1∑︁
𝑙=−𝑁/2

𝑢̂𝑙𝑒
𝚤𝑙𝑥𝑗 , ∀ 𝑗 ∈ 𝑗. (7.34)

Note that this differs from the definition used by, e.g., Numpy.

The inner products used in Eqs. (7.23), (7.24) may be computed using forward FFTs. However, there is a tiny detail
that deserves a comment. The regular Fourier inner product is given as∫︁ 𝐿

0

𝑒𝚤𝑘𝑥𝑒−𝚤𝑙𝑥𝑑𝑥 = 𝐿𝛿𝑘𝑙

38 Chapter 7. Demos

https://mpi4py-fft.readthedocs.io/en/latest/dft.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.fft.html

Shenfun Documentation, Release 2.2.2

where a weight function is chosen as 𝑤(𝑥) = 1 and 𝛿𝑘𝑙 equals unity for 𝑘 = 𝑙 and zero otherwise. In Shenfun we
choose instead to use a weight function 𝑤(𝑥) = 1/𝐿, such that the weighted inner product integrates to unity:∫︁ 𝐿

0

𝑒𝚤𝑘𝑥𝑒−𝚤𝑙𝑥 1

𝐿
𝑑𝑥 = 𝛿𝑘𝑙.

With this weight function the scalar product and the forward transform are the same and we obtain:

(𝑢,Φ𝑙𝑚𝑛) = 𝑢̂𝑙𝑚𝑛 =

(︂
1

𝑁

)︂3

ℱ𝑙 (ℱ𝑚 (ℱ𝑛 (𝑢))) ∀(𝑙,𝑚, 𝑛) ∈ 𝑙×𝑚× 𝑛, (7.35)

From this we see that the variational forms (7.23) and (7.24) may be written in terms of the Fourier transformed
quantities 𝑢̂ and 𝑓 . Expanding the exact derivatives of the nabla operator, we have

(∇𝑢,∇𝑣) = (𝑙2 +𝑚2 + 𝑛2)𝑢̂𝑙𝑚𝑛, (7.36)

(𝑢, 𝑣) = 𝑢̂𝑙𝑚𝑛, (7.37)

(𝑢|𝑢|2, 𝑣) = 𝑢|𝑢|2𝑙𝑚𝑛
(7.38)

and as such the equations to be solved for each wavenumber can be found directly as

𝜕𝑓𝑙𝑚𝑛

𝜕𝑡
=
(︁
−(𝑙2 +𝑚2 + 𝑛2 + 𝛾)𝑢̂𝑙𝑛𝑚 + 𝛾𝑢|𝑢|2𝑙𝑛𝑚

)︁
, (7.39)

𝜕𝑢̂𝑙𝑛𝑚
𝜕𝑡

= 𝑓𝑙𝑛𝑚. (7.40)

There is more than one way to arrive at these equations. Taking the 3D Fourier transform of both equations (7.18) and
(7.19) is one obvious way. With the Python module shenfun, one can work with the inner products as seen in (7.23)
and (7.24), or the Fourier transforms directly. See for example Sec. Runge-Kutta integrator for how (∇𝑢,∇𝑣) can be
implemented. In short, shenfun contains all the tools required to work with the spectral Galerkin method, and we
will now see how shenfun can be used to solve the Klein-Gordon equation.

For completion, we note that the discretized problem to solve can be formulated with the Galerkin method as: for all
𝑡 > 0, find (𝑓, 𝑢) ∈𝑊𝑁 ×𝑊𝑁 such that

𝜕

𝜕𝑡
(𝑓, 𝑔) = −(∇𝑢,∇𝑔) − 𝛾

(︀
𝑢− 𝑢|𝑢|2, 𝑔

)︀
, (7.41)

𝜕

𝜕𝑡
(𝑢, 𝑣) = (𝑓, 𝑣) ∀ (𝑔, 𝑣) ∈𝑊𝑁 ×𝑊𝑁 . (7.42)

where 𝑢(𝑥, 𝑦, 𝑧, 0) and 𝑓(𝑥, 𝑦, 𝑧, 0) are given as the initial conditions according to Eq. (7.15).

7.2.2 Implementation

To solve the Klein-Gordon equations we need to make use of the Fourier bases in shenfun, and these base are found
in submodule shenfun.fourier.bases. The triply periodic domain allows for Fourier in all three directions,
and we can as such create one instance of this base class using Basis() with family Fourier for each direction.
However, since the initial data are real, we can take advantage of Hermitian symmetries and thus make use of a real to
complex class for one (but only one) of the directions, by specifying dtype='d'. We can only make use of the real-
to-complex class for the direction that we choose to transform first with the forward FFT, and the reason is obviously
that the output from a forward transform of real data is now complex. We may start implementing the solver as follows

7.2. Demo - Cubic nonlinear Klein-Gordon equation 39

https://github.com/spectralDNS/shenfun

Shenfun Documentation, Release 2.2.2

from shenfun import *
from mpi4py import MPI
import numpy as np

Set size of discretization
N = (32, 32, 32)

Create bases
K0 = Basis(N[0], 'F', domain=(-2*np.pi, 2*np.pi), dtype='D')
K1 = Basis(N[1], 'F', domain=(-2*np.pi, 2*np.pi), dtype='D')
K2 = Basis(N[2], 'F', domain=(-2*np.pi, 2*np.pi), dtype='d')

We now have three instances K0, K1 and K2, corresponding to the space (7.26), that each can be used to solve one-
dimensional problems. However, we want to solve a 3D problem, and for this we need a tensor product space, like
(7.27), created as a tensor product of these three spaces

Create communicator
comm = MPI.COMM_WORLD
T = TensorProductSpace(comm, (K0, K1, K2), **{'planner_effort':

'FFTW_MEASURE'})

Here the planner_effort, which is a flag used by FFTW, is optional. Possibel choices are from the list
(FFTW_ESTIMATE, FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE), and the flag determines how
much effort FFTW puts in looking for an optimal algorithm for the current platform. Note that it is also possible
to use FFTW wisdom with shenfun, and as such, for production, one may perform exhaustive planning once and
then simply import the result of that planning later, as wisdom.

The TensorProductSpace instance T contains pretty much all we need for computing inner products or fast
transforms between real and wavenumber space. However, since we are going to solve for a mixed system, it is
convenient to also use the MixedTensorProductSpace class

TT = MixedTensorProductSpace([T, T])

We need containers for the solution as well as intermediate work arrays for, e.g., the Runge-Kutta method. Arrays are
created as

uf = Array(TT) # Solution array in physical space
u, f = uf # Split solution array by creating two views u and f
duf = Function(TT) # Array for right hand sides
du, df = duf # Split into views
uf_hat = Function(TT) # Solution in spectral space
uf_hat0 = Function(TT) # Work array 1
uf_hat1 = Function(TT) # Work array 2
u_hat, f_hat = uf_hat # Split into views

The Array class is a subclass of Numpy’s ndarray, without much more functionality than constructors that return
arrays of the correct shape according to the basis used in the construction. The Array represents the left hand side of
(7.29), evaluated on the quadrature mesh. A different type of array is returned by the Function class, that subclasses
both Nympy’s ndarray as well as an internal BasisFunction class. An instance of the Function represents the
entire spectral Galerkin function (7.29). As such, it can be used in complex variational linear forms. For example, if
you want to compute the partial derivative 𝜕𝑢/𝜕𝑥, then this may be achieved by projection, i.e., find 𝑢𝑥 ∈ 𝑉 𝑁 such
that (𝑢𝑥 − 𝜕𝑢/𝜕𝑥, 𝑣) = 0, for all 𝑣 ∈ 𝑉 𝑁 . This projection may be easily computed in shenfun using

ux = project(Dx(u_hat, 0, 1), T)

The following code, on the other hand, will raise an error since you cannot take the derivative of an interpolated
Array u, only a Function

40 Chapter 7. Demos

http://www.fftw.org
http://www.fftw.org/fftw3_doc/Wisdom.html#Wisdom
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html

Shenfun Documentation, Release 2.2.2

try:
project(Dx(u, 0, 1), T)

except AssertionError:
print("AssertionError: Dx not for Arrays")

Initialization

The solution array uf and its transform uf_hat need to be initialized according to Eq. (7.15). To this end it is
convenient (but not required, we could just as easily use Numpy for this as well) to use Sympy, which is a Python
library for symbolic mathamatics.

from sympy import symbols, exp, lambdify

x, y, z = symbols("x,y,z")
ue = 0.1*exp(-(x**2 + y**2 + z**2))
ul = lambdify((x, y, z), ue, 'numpy')
X = T.local_mesh(True)
u[:] = Array(T, buffer=ul(*X))
u_hat = T.forward(u, u_hat)

Here X is a list of the three mesh coordinates (x, y, z) local to the current processor. Each processor has its own
part of the computational mesh, and the distribution is handled during the creation of the TensorProductSpace
class instance T. There is no need to do anything about the f/f_hat arrays since they are already initialized by
default to zero. Note that calling the ul function with the argument *X is the same as calling with X[0], X[1],
X[2].

Runge-Kutta integrator

A fourth order explicit Runge-Kutta integrator requires only a function that returns the right hand sides of (7.39) and
(7.40). Such a function can be implemented as

focusing (+1) or defocusing (-1)
gamma = 1
uh = TrialFunction(T)
vh = TestFunction(T)
k2 = -(inner(grad(vh), grad(uh)).scale + gamma)

def compute_rhs(duf_hat, uf_hat, up, Tp, w0):
duf_hat.fill(0)
u_hat, f_hat = uf_hat
du_hat, df_hat = duf_hat
df_hat[:] = k2*u_hat
up = Tp.backward(u_hat, up)
df_hat += Tp.forward(gamma*up**3, w0)
du_hat[:] = f_hat
return duf_hat

The code is fairly self-explanatory. k2 represents the coefficients in front of the linear 𝑢̂ in (7.39). The output array
is duf_hat, and the input array is uf_hat, whereas up and w0 are work arrays. The array duf_hat contains the
right hand sides of both (7.39) and (7.40), where the linear and nonlinear terms are recognized in the code as comments
(1) and (2). The array uf_hat contains the solution at initial and intermediate Runge-Kutta steps.

With a function that returns the right hand side in place, the actual integrator can be implemented as

7.2. Demo - Cubic nonlinear Klein-Gordon equation 41

http://www.sympy.org/en/index.html

Shenfun Documentation, Release 2.2.2

w0 = Function(T)
a = [1./6., 1./3., 1./3., 1./6.] # Runge-Kutta parameter
b = [0.5, 0.5, 1.] # Runge-Kutta parameter
t = 0
dt = 0.01
end_time = 1.0
while t < end_time-1e-8:

t += dt
uf_hat1[:] = uf_hat0[:] = uf_hat
for rk in range(4):

duf = compute_rhs(duf, uf_hat, u, T, w0)
if rk < 3:

uf_hat[:] = uf_hat0 + b[rk]*dt*duf
uf_hat1 += a[rk]*dt*duf

uf_hat[:] = uf_hat1

Complete solver

A complete solver is given below, with intermediate plotting of the solution and intermediate computation of the total
energy. Note that the total energy is unchanged to 8 decimal points at 𝑡 = 100.

from sympy import symbols, exp, lambdify
import numpy as np
import matplotlib.pyplot as plt
from mpi4py import MPI
from time import time
from shenfun import *

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

Use sympy to set up initial condition
x, y, z = symbols("x,y,z")
ue = 0.1*exp(-(x**2 + y**2 + z**2))
ul = lambdify((x, y, z), ue, 'numpy')

Size of discretization
N = (64, 64, 64)

Defocusing or focusing
gamma = 1

K0 = Basis(N[0], 'F', domain=(-2*np.pi, 2*np.pi), dtype='D')
K1 = Basis(N[1], 'F', domain=(-2*np.pi, 2*np.pi), dtype='D')
K2 = Basis(N[2], 'F', domain=(-2*np.pi, 2*np.pi), dtype='d')
T = TensorProductSpace(comm, (K0, K1, K2), slab=False,

**{'planner_effort': 'FFTW_MEASURE'})

TT = MixedTensorProductSpace([T, T])

X = T.local_mesh(True)
uf = Array(TT)
u, f = uf[:]
up = Array(T)
duf = Function(TT)
du, df = duf[:]

(continues on next page)

42 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

(continued from previous page)

uf_hat = Function(TT)
uf_hat0 = Function(TT)
uf_hat1 = Function(TT)
w0 = Function(T)
u_hat, f_hat = uf_hat[:]

initialize (f initialized to zero, so all set)
u[:] = ul(*X)
u_hat = T.forward(u, u_hat)

uh = TrialFunction(T)
vh = TestFunction(T)
k2 = -inner(grad(vh), grad(uh)).scale - gamma

count = 0
def compute_rhs(duf_hat, uf_hat, up, T, w0):

global count
count += 1
duf_hat.fill(0)
u_hat, f_hat = uf_hat[:]
du_hat, df_hat = duf_hat[:]
df_hat[:] = k2*u_hat
up = T.backward(u_hat, up)
df_hat += T.forward(gamma*up**3, w0)
du_hat[:] = f_hat
return duf_hat

def energy_fourier(comm, a):
result = 2*np.sum(abs(a[..., 1:-1])**2) + np.sum(abs(a[..., 0])**2) + np.

→˓sum(abs(a[..., -1])**2)
result = comm.allreduce(result)
return result

Integrate using a 4th order Rung-Kutta method
a = [1./6., 1./3., 1./3., 1./6.] # Runge-Kutta parameter
b = [0.5, 0.5, 1.] # Runge-Kutta parameter
t = 0.0
dt = 0.005
end_time = 1.
tstep = 0
if rank == 0:

plt.figure()
image = plt.contourf(X[1][..., 0], X[0][..., 0], u[..., 16], 100)
plt.draw()
plt.pause(1e-4)

t0 = time()
K = np.array(T.local_wavenumbers(True, True, True))
TV = VectorTensorProductSpace([T, T, T])
gradu = Array(TV)
while t < end_time-1e-8:

t += dt
tstep += 1
uf_hat1[:] = uf_hat0[:] = uf_hat
for rk in range(4):

duf = compute_rhs(duf, uf_hat, up, T, w0)
if rk < 3:

(continues on next page)

7.2. Demo - Cubic nonlinear Klein-Gordon equation 43

Shenfun Documentation, Release 2.2.2

(continued from previous page)

uf_hat[:] = uf_hat0 + b[rk]*dt*duf
uf_hat1 += a[rk]*dt*duf

uf_hat[:] = uf_hat1

if tstep % 100 == 0:
uf = TT.backward(uf_hat, uf)
ekin = 0.5*energy_fourier(T.comm, f_hat)
es = 0.5*energy_fourier(T.comm, 1j*K*u_hat)
eg = gamma*np.sum(0.5*u**2 - 0.25*u**4)/np.prod(np.array(N))
eg = comm.allreduce(eg)
gradu = TV.backward(1j*K*u_hat, gradu)
ep = comm.allreduce(np.sum(f*gradu)/np.prod(np.array(N)))
ea = comm.allreduce(np.sum(np.array(X)*(0.5*f**2 + 0.5*gradu**2

- (0.5*u**2 - 0.25*u**4)*f))/np.prod(np.array(N)))
if rank == 0:

image.ax.clear()
image.ax.contourf(X[1][..., 0], X[0][..., 0], u[..., 16], 100)
plt.pause(1e-6)
plt.savefig('Klein_Gordon_{}_real_{}.png'.format(N[0], tstep))
print("Time = %2.2f Total energy = %2.8e Linear momentum %2.8e Angular

→˓momentum %2.8e" %(t, ekin+es+eg, ep, ea))
comm.barrier()

print("Time ", time()-t0)

7.3 Demo - 3D Poisson’s equation

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. This is a demonstration of how the Python module shenfun can be used to solve a 3D Poisson equation in a
3D tensor product domain that has homogeneous Dirichlet boundary conditions in one direction and periodicity in the
remaining two. The solver described runs with MPI without any further considerations required from the user. Spectral
convergence, as shown in Figure Convergence of 3D Poisson solvers for both Legendre and Chebyshev modified basis
function, is demonstrated. The demo is implemented in a single Python file dirichlet_poisson3D.py, and the numerical
method is is described in more detail by J. Shen [She94] and [She95].

7.3.1 Model problem

Poisson equation

The Poisson equation is given as

∇2𝑢(𝑥) = 𝑓(𝑥) for 𝑥 = (𝑥, 𝑦, 𝑧) ∈ Ω, (7.43)

𝑢(±1, 𝑦, 𝑧) = 0, (7.44)

𝑢(𝑥, 2𝜋, 𝑧) = 𝑢(𝑥, 0, 𝑧), (7.45)

𝑢(𝑥, 𝑦, 2𝜋) = 𝑢(𝑥, 𝑦, 0), (7.46)

where 𝑢(𝑥) is the solution and 𝑓(𝑥) is a function. The domain Ω = [−1, 1] × [0, 2𝜋]2.

44 Chapter 7. Demos

https://github.com/spectralDNS/shenfun
https://github.com/spectralDNS/shenfun/blob/master/demo/dirichlet_poisson3D.py

Shenfun Documentation, Release 2.2.2

Fig. 2: Convergence of 3D Poisson solvers for both Legendre and Chebyshev modified basis function

To solve Eq. (7.43) with the Galerkin method we need smooth basis functions, 𝑣(𝑥), that live in the Hilbert space
𝐻1(Ω) and that satisfy the given boundary conditions. To this end we will use one basis function for the 𝑥-direction,
𝒳 (𝑥), one for the 𝑦-direction, 𝒴(𝑦), and one for the 𝑧-direction, 𝒵(𝑧). And then we create three-dimensional basis
functions like

𝑣(𝑥, 𝑦, 𝑧) = 𝒳 (𝑥)𝒴(𝑦)𝒵(𝑧).

The basis functions 𝒴(𝑦) and 𝒵(𝑧) are chosen as Fourier exponentials, since these functions are periodic. Likewise,
the basis functions 𝒳 (𝑥) are chosen as modified Legendre or Chebyshev polynomials, using 𝜑𝑙(𝑥) to refer to either
one

𝒳𝑙(𝑥) = 𝜑𝑙(𝑥) − 𝜑𝑙+2(𝑥),∀ 𝑙 ∈ 𝑙𝑁0 , (7.47)

𝒴𝑚(𝑦) = 𝑒𝚤𝑚𝑦,∀𝑚 ∈ 𝑚𝑁1 , (7.48)

𝒵𝑛(𝑧) = 𝑒𝚤𝑛𝑧,∀𝑛 ∈ 𝑛𝑁2 , (7.49)

where the size of the discretized problem is 𝑁 = (𝑁0, 𝑁1, 𝑁2), 𝑙𝑁0 = (0, 1, . . . , 𝑁0−3), 𝑚𝑁1 = (−𝑁1/2,−𝑁1/2+
1, . . . , 𝑁1/2 − 1) and 𝑛𝑁2 = (−𝑁2/2,−𝑁2/2 + 1, . . . , 𝑁2/2 − 1). However, due to Hermitian symmetry, we
only store 𝑁2/2 + 1 wavenumbers in the 𝑧-direction, such that 𝑛𝑁2 = (0, 1, . . . , 𝑁2/2). We refer to the Cartesian
wavenumber mesh on vector form as 𝑘:

𝑘 = {(𝑙,𝑚, 𝑛) | (𝑙,𝑚, 𝑛) ∈ 𝑙𝑁0 ×𝑚𝑁1 × 𝑛𝑁2}.

We have the one-dimensional spaces

𝑉 𝑁0 = span{𝒳𝑙}𝑙∈𝑙𝑁0 , (7.50)

7.3. Demo - 3D Poisson’s equation 45

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft

Shenfun Documentation, Release 2.2.2

𝑉 𝑁1 = span{𝒴𝑚}𝑚∈𝑚𝑁1 , (7.51)

𝑉 𝑁2 = span{𝒵𝑛}𝑛∈𝑛𝑁2 , (7.52)

and from these we create a tensor product space 𝑊𝑁 (𝑥)

𝑊𝑁 (𝑥) = 𝑉 𝑁0(𝑥) ⊗ 𝑉 𝑁1(𝑦) ⊗ 𝑉 𝑁2(𝑧). (7.53)

And then we look for discrete solutions 𝑢 ∈𝑊𝑁 like

𝑢(𝑥) =
∑︁
𝑙∈𝑙𝑁0

∑︁
𝑚∈𝑚𝑁1

∑︁
𝑛∈𝑛𝑁2

𝑢̂𝑙𝑚𝑛𝒳𝑙(𝑥)𝒴𝑚(𝑦)𝒵𝑛(𝑧), (7.54)

=
∑︁
k∈𝑘

𝑢̂k𝑣k(𝑥), (7.55)

where 𝑢̂𝑙𝑚𝑛 are components of the expansion coefficients for 𝑢 and the second form, {𝑢̂k}k∈𝑘, is a shorter, simplified
notation, with sans-serif k = (𝑙,𝑚, 𝑛). The expansion coefficients are the unknowns in the spectral Galerkin method.

We now formulate a variational problem using the Galerkin method: Find 𝑢 ∈𝑊𝑁 such that∫︁
Ω

∇2𝑢 𝑣 𝑤 𝑑𝑥 =

∫︁
Ω

𝑓 𝑣 𝑤 𝑑𝑥 ∀𝑣 ∈ 𝑊𝑁 . (7.56)

Here 𝑑𝑥 = 𝑑𝑥𝑑𝑦𝑑𝑧, and the overline represents a complex conjugate, which is needed here because the Fourier
exponentials are complex functions. The weighted integrals, weighted by 𝑤(𝑥), are called inner products, and a
common notation is ∫︁

Ω

𝑢 𝑣 𝑤 𝑑𝑥 = ⟨𝑢, 𝑣⟩𝑤. (7.57)

The integral can either be computed exactly, or with quadrature. The advantage of the latter is that it is generally faster,
and that non-linear terms may be computed just as quickly as linear. For a linear problem, it does not make much of a
difference, if any at all. Approximating the integral with quadrature, we obtain∫︁

Ω

𝑢 𝑣 𝑤 𝑑𝑥 ≈ ⟨𝑢, 𝑣⟩𝑁𝑤 , (7.58)

≈
𝑁0−1∑︁
𝑖=0

𝑁1−1∑︁
𝑗=0

𝑁2−1∑︁
𝑘=0

𝑢(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)𝑣(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)𝑤(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘), (7.59)

where𝑤(𝑥) now are the quadrature weights. The quadrature points {𝑥𝑖}𝑁0−1
𝑖=0 are specific to the chosen basis, and even

within basis there are two different choices based on which quadrature rule is selected, either Gauss or Gauss-Lobatto.
The quadrature points for the Fourier bases are the uniform {𝑦𝑗}𝑁1−1

𝑗=0 = 2𝜋𝑗/𝑁1 and {𝑧𝑘}𝑁2−1
𝑘=0 = 2𝜋𝑘/𝑁2.

Inserting for test function (7.54) and trialfunction 𝑣𝑝𝑞𝑟 = 𝒳𝑝𝒴𝑞𝒵𝑟 on the left hand side of (7.56), we get

⟨∇2𝑢, 𝑣⟩𝑁𝑤 =

⟨
∇2

∑︁
𝑙∈𝑙𝑁0

∑︁
𝑚∈𝑚𝑁1

∑︁
𝑛∈𝑛𝑁2

𝑢̂𝑙𝑚𝑛𝒳𝑙𝒴𝑚𝒵𝑛,𝒳𝑝𝒴𝑞𝒵𝑟

⟩𝑁

𝑤

,

=

[︂(︁
𝒳

′′

𝑙 ,𝒳𝑝

)︁𝑁
𝑤
− (𝑚2 + 𝑛2) (𝒳𝑙,𝒳𝑝)

𝑁
𝑤

]︂
𝛿𝑚𝑞𝛿𝑛𝑟𝑢̂𝑙𝑚𝑛,

=
(︀
𝑎𝑝𝑙 − (𝑚2 + 𝑛2)𝑏𝑝𝑙

)︀
𝑢̂𝑙𝑞𝑟,

where the notation (·, ·)𝑁0
𝑤

𝑏𝑝𝑙 = (𝒳𝑙,𝒳𝑝)
𝑁0

𝑤 =

𝑁0−1∑︁
𝑖=0

𝒳𝑙(𝑥𝑖)𝒳𝑝(𝑥𝑖)𝑤(𝑥𝑖), (7.60)

46 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

is used to represent an 𝐿2 inner product along only the first, nonperiodic, direction. The delta functions above come
from integrating over the two periodic directions, where we use constant weight functions 𝑤 = 1/(2𝜋) in the inner
products ∫︁ 2𝜋

0

𝒴𝑚(𝑦)𝒴𝑞(𝑦)
1

2𝜋
𝑑𝑦 = 𝛿𝑚𝑞, (7.61)

∫︁ 2𝜋

0

𝒵𝑛(𝑧)𝒵𝑟(𝑧)
1

2𝜋
𝑑𝑧 = 𝛿𝑛𝑟, (7.62)

The Kronecker delta-function 𝛿𝑖𝑗 is one for 𝑖 = 𝑗 and zero otherwise.

The right hand side of Eq. (7.56) is computed as

𝑓𝑝𝑞𝑟 = ⟨𝑓,𝒳𝑝𝒴𝑞𝒵𝑟⟩𝑁𝑤 , (7.63)

where a tilde is used because this is not a complete transform of the function 𝑓 , but only an inner product.

The linear system of equations to solve for the expansion coefficients can now be found as follows(︀
𝑎𝑙𝑗 − (𝑚2 + 𝑛2)𝑏𝑙𝑗

)︀
𝑢̂𝑗𝑚𝑛 = 𝑓𝑙𝑚𝑛 ∀ (𝑙,𝑚, 𝑛) ∈ 𝑘. (7.64)

Now, when 𝑢̂ = {𝑢̂k}k∈𝑘 is found by solving this linear system over the entire computational mesh, it may be
transformed to real space 𝑢(𝑥) using (7.54). Note that the matrices 𝐴 ∈ R𝑁0−3×𝑁0−3 and 𝐵 ∈ R𝑁0−3×𝑁0−3 differ
for Legendre or Chebyshev bases, but for either case they have a special structure that allows for a solution to be found
very efficiently in the order of 𝒪(𝑁0 − 3) operations given 𝑚 and 𝑛, see [She94] and [She95]. Fast solvers for (7.64)
are implemented in shenfun for both bases.

Method of manufactured solutions

In this demo we will use the method of manufactured solutions to demonstrate spectral accuracy of the shenfun
bases. To this end we choose a smooth analytical function that satisfies the given boundary conditions:

𝑢𝑒(𝑥, 𝑦, 𝑧) = (cos(4𝑥) + sin(2𝑦) + sin(4𝑧)) (1 − 𝑥2). (7.65)

Sending 𝑢𝑒 through the Laplace operator, we obtain the right hand side

∇2𝑢𝑒(𝑥, 𝑦, 𝑧) = −16(1 − 𝑥2) cos(4𝑥) + 16𝑥 sin(4𝑥) − 2 cos(4𝑥) − (1 − 𝑥2)(4 sin(2𝑦) + 16 sin(4𝑧)). (7.66)

Now, setting 𝑓𝑒(𝑥) = ∇2𝑢𝑒(𝑥) and solving for ∇2𝑢(𝑥) = 𝑓𝑒(𝑥), we can compare the numerical solution 𝑢(𝑥) with
the analytical solution 𝑢𝑒(𝑥) and compute error norms.

7.3.2 Implementation

Preamble

We will solve the Poisson problem using the shenfun Python module. The first thing needed is then to import some of
this module’s functionality plus some other helper modules, like Numpy and Sympy:

from sympy import symbols, cos, sin, exp, lambdify
import numpy as np
from shenfun.tensorproductspace import TensorProductSpace
from shenfun import inner, div, grad, TestFunction, TrialFunction, Function, \

project, Dx, Basis
from mpi4py import MPI

We use Sympy for the manufactured solution and Numpy for testing. MPI for Python (mpi4py) is required for
running the solver with MPI.

7.3. Demo - 3D Poisson’s equation 47

https://github.com/spectralDNS/shenfun
https://numpy.org
https://sympy.org

Shenfun Documentation, Release 2.2.2

Manufactured solution

The exact solution 𝑢𝑒(𝑥, 𝑦, 𝑧) and the right hand side 𝑓𝑒(𝑥, 𝑦, 𝑧) are created using Sympy as follows

x, y, z = symbols("x,y,z")
ue = (cos(4*x) + sin(2*y) + sin(4*z))*(1-x**2)
fe = ue.diff(x, 2) + ue.diff(y, 2) + ue.diff(z, 2)

Lambdify for faster evaluation
ul = lambdify((x, y, z), ue, 'numpy')
fl = lambdify((x, y, z), fe, 'numpy')

These solutions are now valid for a continuous domain. The next step is thus to discretize, using the computational
mesh

(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘)∀ (𝑖, 𝑗, 𝑘) ∈ [0, 1, . . . , 𝑁0 − 1] × [0, 1, . . . , 𝑁1 − 1] × [0, 1, . . . , 𝑁2 − 1]

and a finite number of basis functions.

Note that it is not mandatory to use Sympy for the manufactured solution. Since the solution is known (7.66), we
could just as well simply use Numpy to compute 𝑓𝑒. However, with Sympy it is much easier to experiment and
quickly change the solution.

Discretization and MPI

We create three bases with given size, one for each dimension of the problem. From these three bases a
TensorProductSpace is created.

Size of discretization
N = [14, 15, 16]

SD = Basis(N[0], 'Chebyshev', bc=(0, 0))
#SD = Basis(N[0], 'Legendre', bc=(0, 0))
K1 = Basis(N[1], 'Fourier', dtype='D')
K2 = Basis(N[2], 'Fourier', dtype='d')
T = TensorProductSpace(comm, (SD, K1, K2), axes=(0, 1, 2))
X = T.local_mesh()

Note that we can either choose a Legendre or a Chebyshev basis for the nonperiodic direction. The
TensorProductSpace class takes an MPI communicator as first argument and the computational mesh is dis-
tributed internally using the pencil method. The T.local_mesh method returns the mesh local to each processor.
The axes keyword determines the order of transforms going back and forth between real and spectral space. With
axes=(0, 1, 2) and a forward transform (from real space to spectral, i.e., from 𝑢 to 𝑢̂) axis 2 is transformed first
and then 1 and 0, respectively.

The manufactured solution is created with Dirichlet boundary conditions in the 𝑥-direction, and for this reason SD is
the first basis in T. We could just as well have put the nonperiodic direction along either 𝑦- or 𝑧-direction, though, but
this would then require that the order of the transformed axes be changed as well. For example, putting the Dirichlet
direction along 𝑦, we would need to create the tensorproductspace as

T = TensorProductSpace(comm, (K1, SD, K2), axes=(1, 0, 2))

such that the Dirichlet direction is the last to be transformed. The reason for this is that only the Dirichlet direction
leads to matrices that need to be inverted (or solved). And for this we need the entire data array along the Dirichlet
direction to be local to the processor. If the SD basis is the last to be transformed, then the data will be aligned in this
direction, whereas the other two directions may both, or just one of them, be distributed.

48 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

Note that X is a list containing local values of the arrays {𝑥𝑖}𝑁0−1
𝑖=0 , {𝑦𝑗}𝑁1−0

𝑗=0 and {𝑧𝑘}𝑁2−1
𝑘=0 . For example, using 4

procesors and a processor mesh of shape 2 × 2, then the local slices for each processor in spectral space are

>>> print(comm.Get_rank(), T.local_slice())
3 [slice(0, 14, None), slice(8, 15, None), slice(5, 9, None)]
1 [slice(0, 14, None), slice(0, 8, None), slice(5, 9, None)]
2 [slice(0, 14, None), slice(8, 15, None), slice(0, 5, None)]
0 [slice(0, 14, None), slice(0, 8, None), slice(0, 5, None)]

where the global shape is 𝑁 = (14, 15, 9) after taking advantage of Hermitian symmetry in the 𝑧-direction. So, all
processors have the complete first dimension available locally, as they should. Furthermore, processor three owns the
slices from 8 : 15 and 5 : 9 along axes 𝑦 and 𝑧, respectively. Processor 2 owns slices 0 : 8 and 0 : 5 etc. In real space
the mesh is distributed differently. First of all the global mesh shape is 𝑁 = (14, 15, 16), and it is distributed along
the first two dimensions. The local slices can be inspected as

>>> print(comm.Get_rank(), T.local_slice(False))
0 [slice(0, 7, None), slice(0, 8, None), slice(0, 16, None)]
1 [slice(0, 7, None), slice(8, 15, None), slice(0, 16, None)]
2 [slice(7, 14, None), slice(0, 8, None), slice(0, 16, None)]
3 [slice(7, 14, None), slice(8, 15, None), slice(0, 16, None)]

Since two directions are distributed, both in spectral and real space, we say that we have a two-dimensional decompo-
sition (here a 2 × 2 shaped processor mesh) and the MPI distribution is of type pencil. It is also possible to choose a
slab decomposition, where only one dimension of the array is distributed. This choice needs to be made when creating
the tensorproductspace as

T = TensorProductSpace(comm, (SD, K1, K2), axes=(0, 1, 2), slab=True)

which will lead to a mesh that is distributed along 𝑥-direction in real space and 𝑦-direction in spectral space. The local
slices are

>>> print(comm.Get_rank(), T.local_slice()) # spectral space
1 [slice(0, 14, None), slice(4, 8, None), slice(0, 9, None)]
2 [slice(0, 14, None), slice(8, 12, None), slice(0, 9, None)]
0 [slice(0, 14, None), slice(0, 4, None), slice(0, 9, None)]
3 [slice(0, 14, None), slice(12, 15, None), slice(0, 9, None)]
>>> print(comm.Get_rank(), T.local_slice(False)) # real space
3 [slice(11, 14, None), slice(0, 15, None), slice(0, 16, None)]
0 [slice(0, 4, None), slice(0, 15, None), slice(0, 16, None)]
2 [slice(8, 11, None), slice(0, 15, None), slice(0, 16, None)]
1 [slice(4, 8, None), slice(0, 15, None), slice(0, 16, None)]

Note that the slab decomposition is usually the fastest choice. However, the maximum number of processors with slab
is min{𝑁0, 𝑁1}, whereas a pencil approach can be used with up to min{𝑁1(𝑁2/2 + 1), 𝑁0𝑁1} processors.

Variational formulation

The variational problem (7.56) can be assembled using shenfun’s form language, which is perhaps surprisingly
similar to FEniCS.

u = TrialFunction(T)
v = TestFunction(T)
K = T.local_wavenumbers()
Get f on quad points
fj = Array(T, buffer=fl(*X))
Compute right hand side of Poisson equation

(continues on next page)

7.3. Demo - 3D Poisson’s equation 49

Shenfun Documentation, Release 2.2.2

(continued from previous page)

f_hat = inner(v, fj)
Get left hand side of Poisson equation
matrices = inner(v, div(grad(u)))

The Laplacian operator is recognized as div(grad). The matrices object is a dictionary representing the left
hand side of (7.64), and there are two keys: (ADDmat, BDDmat). The value of matrices["ADDmat"] is an object
of type SpectralMatrix, which is shenfun’s type for a matrix. This matrix represents 𝐴𝑙𝑗 , see (7.64), and it has
an attribute scale that is equal to (2𝜋)2 (also see (7.64)). The other key in matrices is BDDmat, and the value here
is a SpectralMatrix representing 𝐵𝑙𝑗 from (7.64). This matrix has an attribute scale that is equal to 𝑚2 + 𝑛2.
This scale is stored as a numpy array of shape (1, 15, 9), representing the set {𝑚2 + 𝑛2 : (𝑚,𝑛) ∈ 𝑚𝑁1 × 𝑛𝑁2}.
Note that 𝑛𝑁2 is stored simply as an array of length 𝑁2/2 + 1 (here 9), since the transform in direction 𝑧 takes a real
signal and transforms it taking advantage of Hermitian symmetry, see rfft.

Solve linear equations

Finally, solve linear equation system and transform solution from spectral 𝑢̂k vector to the real space 𝑢(𝑥) and then
check how the solution corresponds with the exact solution 𝑢𝑒.

Create Helmholtz linear algebra solver
H = Solver(*matrices)

Solve and transform to real space
u_hat = Function(T) # Solution spectral space
u_hat = H(u_hat, f_hat) # Solve
uq = T.backward(u_hat)

Compare with analytical solution
uj = ul(*X)
error = comm.reduce(np.linalg.norm(uj-uq)**2)
if comm.Get_rank() == 0:

print("Error=%2.16e" %(np.sqrt(error)))

Convergence test

A complete solver is given in Sec. Complete solver. This solver is created such that it takes in two commandline
arguments and prints out the 𝐿2-errornorm of the solution in the end. We can use this to write a short script that
performs a convergence test. The solver is run like

>>> python dirichlet_poisson3D.py 32 legendre
Error=6.5955040031498912e-10

for a discretization of size 𝑁 = 𝑁3 = 323 and for the Legendre basis. Alternatively, change legendre to
chebyshev for the Chebyshev basis.

We set up the solver to run for a list of 𝑁 = [8, 10, . . . , 38], and collect the errornorms in arrays to be plotted. Such a
script can be easily created with the subprocess module

import subprocess
from numpy import log, array
from matplotlib import pyplot as plt

N = range(8, 40, 2)
error = {}

(continues on next page)

50 Chapter 7. Demos

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.fft.rfft.html
https://docs.python.org/3/library/subprocess.html

Shenfun Documentation, Release 2.2.2

(continued from previous page)

for basis in ('legendre', 'chebyshev'):
error[basis] = []
for i in range(len(N)):

output = subprocess.check_output("python dirichlet_poisson3D.py {} {}".
→˓format(N[i], basis), shell=True)

exec(output) # Error is printed as "Error=%2.16e"%(np.linalg.norm(uj-ua))
error[basis].append(Error)
if i == 0:

print("Error hmin r ")
print("%2.8e %2.8e %2.8f"%(error[basis][-1], 1./N[i], 0))

if i > 0:
print("%2.8e %2.8e %2.8f"%(error[basis][-1], 1./N[i], log(error[basis][-

→˓1]/error[basis][-2])/log(N[i-1]/N[i])))

The error can be plotted using matplotlib, and the generated figure is shown in the summary’s Fig. Convergence of 3D
Poisson solvers for both Legendre and Chebyshev modified basis function. The spectral convergence is evident and we
can see that after 𝑁 = 25 roundoff errors dominate as the errornorm trails off around 10−13.

plt.figure(figsize=(6, 4))
for basis, col in zip(('legendre', 'chebyshev'), ('r', 'b')):

plt.semilogy(N, error[basis], col, linewidth=2)
plt.title('Convergence of Poisson solvers 3D')
plt.xlabel('N')
plt.ylabel('Error norm')
plt.legend(('Legendre', 'Chebyshev'))
plt.savefig('poisson3D_errornorm.png')
plt.show()

Complete solver

A complete solver, that can use either Legendre or Chebyshev bases, and any quadrature size chosen as a command-
line argument, is shown below.

>>> python dirichlet_poisson3D.py 36 legendre

or similarly with chebyshev instead of legendre.

import sys, os
import importlib
from sympy import symbols, cos, sin, lambdify
import numpy as np
from shenfun import inner, div, grad, TestFunction, TrialFunction, Array, \

Function, Basis, TensorProductSpace
import time
from mpi4py import MPI
try:

import matplotlib.pyplot as plt
except ImportError:

plt = None

comm = MPI.COMM_WORLD

assert len(sys.argv) == 3
assert sys.argv[-1].lower() in ('legendre', 'chebyshev')
assert isinstance(int(sys.argv[-2]), int)

(continues on next page)

7.3. Demo - 3D Poisson’s equation 51

https://matplotlib.org

Shenfun Documentation, Release 2.2.2

(continued from previous page)

Collect basis and solver from either Chebyshev or Legendre submodules
family = sys.argv[-1].lower()
base = importlib.import_module('.'.join(('shenfun', family)))
Solver = base.la.Helmholtz

Use sympy to compute a rhs, given an analytical solution
a = -0
b = 0
x, y, z = symbols("x,y,z")
ue = (cos(4*x) + sin(2*y) + sin(4*z))*(1-z**2) + a*(1 + z)/2. + b*(1 - z)/2.
fe = ue.diff(x, 2) + ue.diff(y, 2) + ue.diff(z, 2)

Lambdify for faster evaluation
ul = lambdify((x, y, z), ue, 'numpy')
fl = lambdify((x, y, z), fe, 'numpy')

Size of discretization
N = int(sys.argv[-2])
N = [N, N, N]

SD = Basis(N[0], family=family, bc=(a, b))
K1 = Basis(N[1], family='F', dtype='D')
K2 = Basis(N[2], family='F', dtype='d')
T = TensorProductSpace(comm, (K1, K2, SD), axes=(0, 1, 2), slab=True)
X = T.local_mesh()
u = TrialFunction(T)
v = TestFunction(T)

K = T.local_wavenumbers()

Get f on quad points
fj = Array(T, buffer=fl(*X))

Compute right hand side of Poisson equation
f_hat = inner(v, fj)
if family == 'legendre':

f_hat *= -1.

Get left hand side of Poisson equation
if family == 'chebyshev':

matrices = inner(v, div(grad(u)))
else:

matrices = inner(grad(v), grad(u))

Create Helmholtz linear algebra solver
H = Solver(*matrices)

Solve and transform to real space
u_hat = Function(T) # Solution spectral space
t0 = time.time()
u_hat = H(u_hat, f_hat) # Solve
uq = T.backward(u_hat, fast_transform=False)

Compare with analytical solution
uj = ul(*X)
error = comm.reduce(np.linalg.norm(uj-uq)**2)

(continues on next page)

52 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

(continued from previous page)

if comm.Get_rank() == 0:
print("Error=%2.16e" %(np.sqrt(error)))

7.4 Demo - Helmholtz equation in polar coordinates

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. This is a demonstration of how the Python module shenfun can be used to solve the Helmholtz equation on
a circular disc, using polar coordinates. This demo is implemented in a single Python file unitdisc_helmholtz.py, and
the numerical method is described in more detail by J. Shen [She97].

Fig. 3: Helmholtz on the unit disc

7.4. Demo - Helmholtz equation in polar coordinates 53

https://github.com/spectralDNS/shenfun
https://github.com/spectralDNS/shenfun/blob/master/demo/unitdisc_helmholtz.py

Shenfun Documentation, Release 2.2.2

7.4.1 Helmholtz equation

The Helmholtz equation is given as

−∇2𝑢(𝑥) + 𝛼𝑢(𝑥) = 𝑓(𝑥) for 𝑥 = (𝑥, 𝑦) ∈ Ω, (7.67)

𝑢 = 0 on 𝜕Ω, (7.68)

where 𝑢(𝑥) is the solution, 𝑓(𝑥) is a function and 𝛼 a constant. The domain is a circular disc Ω = {(𝑥, 𝑦) : 𝑥2 +𝑦2 <
𝑎2} with radius 𝑎. We use polar coordinates (𝜃, 𝑟), defined as

𝑥 = 𝑟 cos 𝜃, (7.69)

𝑦 = 𝑟 sin 𝜃, (7.70)

which leads to a Cartesian product mesh (𝜃, 𝑟) ∈ [0, 2𝜋) × [0, 𝑎] suitable for numerical implementations. Note that
the two directions are ordered with 𝜃 first and then 𝑟, which is less common than (𝑟, 𝜃). This has to do with the fact
that we will need to solve linear equation systems along the radial direction, but not the 𝜃-direction, since Fourier
matrices are diagonal. When the radial direction is placed last, the data in the radial direction will be contigeous in a
row-major C memory, leading to faster memory access where it is needed the most. Note that it takes very few changes
in shenfun to switch the directions to (𝑟, 𝜃) if this is still desired.

We will use Chebyshev or Legendre basis functions 𝜓𝑗(𝑟) for the radial direction and a periodic Fourier expansion in
exp(𝚤𝑘𝜃) for the azimuthal direction. The polar basis functions are as such

𝑣𝑘𝑗(𝜃, 𝑟) = exp(𝚤𝑘𝜃)𝜓𝑗(𝑟), (7.71)

and we look for solutions

𝑢(𝜃, 𝑟) =
∑︁
𝑘

∑︁
𝑗

𝑢̂𝑘𝑗𝑣𝑘𝑗(𝜃, 𝑟). (7.72)

A discrete Fourier approximation space with 𝑁 basis functions is then

𝑉 𝑁
𝐹 = span{exp(𝚤𝑘𝜃)}, for 𝑘 ∈ 𝐾, (7.73)

where 𝐾 = {−𝑁/2,−𝑁/2 + 1, . . . , 𝑁/2 − 1}. Since the solution 𝑢(𝜃, 𝑟) is real, there is Hermitian symmetry and
𝑢̂𝑘,𝑗 = 𝑢̂*𝑘,−𝑗 (with * denoting a complex conjugate). For this reason we use only 𝑘 ∈ 𝐾 = {0, 1, . . . , 𝑁/2} in solving
for 𝑢̂𝑘𝑗 , and then use Hermitian symmetry to get the remaining unknowns.

The radial basis is more tricky, because there is a nontrivial ‘boundary’ condition (pole condition) that needs to be
applied at the center of the disc (𝑟 = 0)

𝜕𝑢(𝜃, 0)

𝜕𝜃
= 0. (7.74)

To apply this condition we split the solution into Fourier coefficients with wavenumber 0 and 𝐾∖{0}, remembering
that the Fourier basis function with 𝑘 = 0 is simply 1

𝑢(𝜃, 𝑟) =
∑︁
𝑗

⎛⎝𝑢̂0𝑗𝜓𝑗(𝑟) +

𝑁/2∑︁
𝑘=1

𝑢̂𝑘𝑗 exp(𝚤𝑘𝜃)𝜓𝑗(𝑟)

⎞⎠ . (7.75)

We then apply a different radial basis for the two 𝜓’s in the above equation (renaming the first 𝜓)

𝑢(𝜃, 𝑟) =
∑︁
𝑗

⎛⎝𝑢̂0𝑗𝜓𝑗(𝑟) +

𝑁/2∑︁
𝑘=1

𝑢̂𝑘𝑗 exp(𝚤𝑘𝜃)𝜓𝑗(𝑟)

⎞⎠ . (7.76)

54 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

Note that the first term
∑︀

𝑗 𝑢̂0𝑗𝜓𝑗(𝑟) is independent of 𝜃. Now, to enforce conditions

𝑢(𝜃, 𝑎) = 0, (7.77)

𝜕𝑢(𝜃, 0)

𝜕𝜃
= 0, (7.78)

it is sufficient for the two bases (𝜓 and 𝜓) to satisfy

𝜓𝑗(𝑎) = 0, (7.79)

𝜓𝑗(𝑎) = 0, (7.80)

𝜓𝑗(0) = 0. (7.81)

Bases that satisfy these conditions can be found both with Legendre and Chebyshev polynomials. If 𝜑𝑗(𝑥) is used for
either the Legendre polynomial 𝐿𝑗(𝑥) or the Chebyshev polynomial of the first kind 𝑇𝑗(𝑥), we can have

𝜓𝑗(𝑟) = 𝜑𝑗(2𝑟/𝑎− 1) − 𝜑𝑗+1(2𝑟/𝑎− 1), for 𝑗 ∈ 0, 1, . . . 𝑁 − 1, (7.82)

𝜓𝑗(𝑟) = 𝜑𝑗(2𝑟/𝑎− 1) − 𝜑𝑗+2(2𝑟/𝑎− 1), for 𝑗 ∈ 0, 1, . . . 𝑁 − 2. (7.83)

Define the following approximation spaces for the radial direction

𝑉 𝑁
𝐷 = span{𝜓𝑗}𝑁−3

𝑗=0 (7.84)

𝑉 𝑁
𝑈 = span{𝜓𝑗}𝑁−2

𝑗=0 (7.85)

and split the function space for the azimuthal direction into

𝑉 0
𝐹 = span{1}, (7.86)

𝑉 1
𝐹 = span{exp(𝚤𝑘𝜃)}, for 𝑘 ∈ 𝐾∖{0}. (7.87)

We then look for solutions

𝑢(𝜃, 𝑟) = 𝑢0(𝑟) + 𝑢1(𝜃, 𝑟), (7.88)

where

𝑢0(𝑟) =

𝑁−2∑︁
𝑗=0

𝑢̂0𝑗𝜓𝑗(𝑟), (7.89)

𝑢1(𝜃, 𝑟) =

𝑁−3∑︁
𝑗=0

𝑁/2∑︁
𝑘=1

𝑢̂1𝑘𝑗 exp(𝚤𝑘𝜃)𝜓𝑗(𝑟). (7.90)

As such the Helmholtz problem is split in two smaller problems. The two problems read with the spectral Galerkin
method:

Find 𝑢0 ∈ 𝑉 0
𝐹 ⊗ 𝑉 𝑁

𝑈 such that∫︁
Ω

(−∇2𝑢0 + 𝛼𝑢0)𝑣0𝑤𝑑𝜎 =

∫︁
Ω

𝑓𝑣0𝑤𝑑𝜎, ∀ 𝑣0 ∈ 𝑉 0
𝐹 ⊗ 𝑉 𝑁

𝑈 . (7.91)

Find 𝑢1 ∈ 𝑉 1
𝐹 ⊗ 𝑉 𝑁

𝐷 such that∫︁
Ω

(−∇2𝑢1 + 𝛼𝑢1)𝑣1𝑤𝑑𝜎 =

∫︁
Ω

𝑓𝑣1𝑤𝑑𝜎, ∀ 𝑣1 ∈ 𝑉 1
𝐹 ⊗ 𝑉 𝑁

𝐷 . (7.92)

Note that integration over the domain is done using polar coordinates with an integral measure of 𝑑𝜎 = 𝑟𝑑𝑟𝑑𝜃.
However, the integral in the radial direction needs to be mapped to 𝑡 = 2𝑟/𝑎 − 1, where 𝑡 ∈ [−1, 1], which suits the
basis functions used, see (7.83). This leads to a measure of 0.5(𝑡 + 1)𝑎𝑑𝑡𝑑𝜃. Furthermore, the weight 𝑤(𝑡) will be
unity for the Legendre basis and (1 − 𝑡2)−0.5 for the Chebyshev bases.

7.4. Demo - Helmholtz equation in polar coordinates 55

Shenfun Documentation, Release 2.2.2

7.4.2 Implementation in shenfun

A complete implementation is found in the file unitdisc_helmholtz.py. Here we give a brief explanation for the
implementation. Start by importing all functionality from shenfun and sympy, where Sympy is required for handeling
the polar coordinates.

from shenfun import *
import sympy as sp

Define polar coordinates using angle along first axis and radius second
theta, r = psi = sp.symbols('x,y', real=True, positive=True)
rv = (r*sp.cos(theta), r*sp.sin(theta)) # Map to Cartesian (x, y)

Note that Sympy symbols are both positive and real, 𝜃 is chosen to be along the first axis and 𝑟 second. This has to
agree with the next step, which is the creation of tensorproductspaces 𝑉 0

𝐹 ⊗𝑉 𝑁
𝑈 and 𝑉 1

𝐹 ⊗𝑉 𝑁
𝐷 . We use domain=(0,

1) for the radial direction to get a unit disc, whereas the default domain for the Fourier bases is already the required
(0, 2𝜋).

N = 32
F = Basis(N, 'F', dtype='d')
F0 = Basis(1, 'F', dtype='d')
L = Basis(N, 'L', bc='Dirichlet', domain=(0, 1))
L0 = Basis(N, 'L', bc='UpperDirichlet', domain=(0, 1))
T = TensorProductSpace(comm, (F, L), axes=(1, 0), coordinates=(psi, rv))
T0 = TensorProductSpace(MPI.COMM_SELF, (F0, L0), axes=(1, 0), coordinates=(psi, rv))

Note that since F0 only has one component we could actually use L0 without creating T0. But the code turns out to
be simpler if we use T0, much because the additional 𝜃-direction is required for the polar coordinates to apply. Using
one single basis function for the 𝜃 direction is as such a generic way to handle polar 1D problems (i.e., problems
that are only functions of the radial direction, but still using polar coordinates). Also note that F is created using the
entire range of wavenumbers even though it should not include wavenumber 0. As such we need to make sure that the
coefficient created for 𝑘 = 0 (i.e., 𝑢̂10,𝑗) will be exactly zero. Finally, note that T0 is not distributed with MPI, which
is accomplished using MPI.COMM_SELF instead of comm (which equals MPI.COMM_WORLD). The purely radial
problem (??) is only solved on the one processor with rank = 0.

Polar coordinates are ensured by feeding coordinates=(psi, rv) to TensorProductSpace. Operators
like div() grad() and curl() will now work on items of Function, TestFunction and TrialFunction
using a polar coordinate system.

To define the equations (??) and (7.92) we first declare these test- and trialfunctions, and then use code that is remark-
ably similar to the mathematics.

v = TestFunction(T)
u = TrialFunction(T)
v0 = TestFunction(T0)
u0 = TrialFunction(T0)

mats = inner(v, -div(grad(u))+alpha*u)
if comm.Get_rank() == 0:

mats0 = inner(v0, -div(grad(u0))+alpha*u0)

Here mats and mats0 will contain several tensor product matrices in the form of TPMatrix. Since there is only
one non-periodic direction the matrices can be easily solved using SolverGeneric1NP. But first we need to define
the function 𝑓(𝜃, 𝑟). To this end we use sympy and the method of manufactured solution to define a possible solution
ue, and then compute f exactly using exact differentiation

56 Chapter 7. Demos

https://github.com/spectralDNS/shenfun/blob/master/demo/unitdisc_helmholtz.py
https://github.com/spectralDNS/shenfun
https://sympy.org

Shenfun Documentation, Release 2.2.2

Manufactured solution
alpha = 2
ue = (r*(1-r))**2*sp.cos(8*theta)-0.1*(r-1)
f = -ue.diff(r, 2) - (1/r)*ue.diff(r, 1) - (1/r**2)*ue.diff(theta, 2) + alpha*ue

Compute the right hand side on the quadrature mesh
fj = Array(T, buffer=f)

Take scalar product
f_hat = Function(T)
f_hat = inner(v, fj, output_array=f_hat)
if T.local_slice(True)[0].start == 0: # The processor that owns k=0

f_hat[0] = 0

For k=0 we solve only a 1D equation. Do the scalar product for Fourier
coefficient 0 by hand (or sympy).
if comm.Get_rank() == 0:

f0_hat = Function(T0)
gt = sp.lambdify(r, sp.integrate(f, (theta, 0, 2*sp.pi))/2/sp.pi)(L0.mesh())
f0_hat = L0.scalar_product(gt, f0_hat)

Note that for 𝑢0 we perform the interal in the 𝜃 direction exactly using sympy. This is necessary since one Fourier
coefficient is not sufficient to do this integral numerically. For the 𝑢1 case we do the integral numerically as part of the
inner product. With the correct right hand side assembled we can solve the linear system of equations

u_hat = Function(T)
Sol1 = SolverGeneric1NP(mats)
u_hat = Sol1(f_hat, u_hat)

case k = 0
u0_hat = Function(T0)
if comm.Get_rank() == 0:

Sol0 = SolverGeneric1NP(mats0)
u0_hat = Sol0(f0_hat, u0_hat)

comm.Bcast(u0_hat, root=0)

Having found the solution in spectral space all that is left is to transform it back to real space.

Transform back to real space. Broadcast 1D solution
sl = T.local_slice(False)
uj = u_hat.backward() + u0_hat.backward()[:, sl[1]]

7.4.3 Postprocessing

The solution can now be compared with the exact solution through

ue = Array(T, buffer=ue)
print('Error =', np.linalg.norm(uj-ue))
---> Error = 7.45930806417765e-15

We can also get the gradient of the solution. For this we need a space without boundary conditions, and a vector space

TT = T.get_orthogonal()
V = VectorTensorProductSpace(TT)

7.4. Demo - Helmholtz equation in polar coordinates 57

Shenfun Documentation, Release 2.2.2

Notice that we do not have the solution in one single space in spectral space, since it is a combination of u_hat and
u0_hat. For this reason we first transform the solution from real space uj to the new orthogonal space TT

ua = Array(TT, buffer=uj)
uh = ua.forward()

With the solution as a Function we can simply project the gradient to V

dv = project(grad(uh), V)
du = dv.backward()

Note that the gradient du now contains the contravariant components of the covariant basis vector b. The basis vector
b is not normalized (it’s length is not unity).

b = T.coors.get_covariant_basis()

The basis vectors are, in fact

b𝜃 = −𝑟 sin (𝜃) i + 𝑟 cos (𝜃) j

b𝑟 = cos (𝜃) i + sin (𝜃) j

and we see that they are given in terms of the Cartesian unit vectors. The gradient we have computed is (and yes, it
should be 𝑟2 because we do not have unit vectors)

∇𝑢 =
1

𝑟2
𝜕𝑢

𝜕𝜃⏟ ⏞
𝑑𝑢[0]

b𝜃 +
𝜕𝑢

𝜕𝑟⏟ ⏞
𝑑𝑢[1]

b𝑟 (7.93)

Now it makes sense to plot the solution and its gradient in Cartesian instead of computational coordinates. To this end
we need to project the gradient to a Cartesian basis

𝜕𝑢

𝜕𝑥
= ∇𝑢 · i,

𝜕𝑢

𝜕𝑦
= ∇𝑢 · j.

We compute the Cartesian gradient by assembling (7.93) on the computational grid

ui, vi = TT.local_mesh(True)
bij = np.array(sp.lambdify(psi, b)(ui, vi))
gradu = du[0]*bij[0] + du[1]*bij[1]

Because of the way the vectors are stored, gradu[0] will now contain ∇𝑢 · i and gradu[1] will contain ∇𝑢 · j.
To validate we compute the exact gradient and compute the error norm

gradue = Array(V, buffer=list(b[0]*ue.diff(theta, 1)/r**2 + b[1]*ue.diff(r, 1)))
#or alternatively
#gradue = Array(V, buffer=grad(u).tosympy(basis=ue, psi=psi))
print('Error gradient', np.linalg.norm(gradu-gradue))
---> Error gradient 1.0856774538980375e-08

We now refine the solution to make it look better, and plot on the unit disc.

u_hat2 = u_hat.refine([N*3, N*3])
u0_hat2 = u0_hat.refine([1, N*3])
sl = u_hat2.function_space().local_slice(False)
ur = u_hat2.backward() + u0_hat2.backward()[:, sl[1]]

(continues on next page)

58 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

(continued from previous page)

Wrap periodic plot around since it looks nicer
xx, yy = u_hat2.function_space().local_curvilinear_mesh()
xp = np.vstack([xx, xx[0]])
yp = np.vstack([yy, yy[0]])
up = np.vstack([ur, ur[0]])
For vector no need to wrap around and no need to refine:
xi, yi = TT.local_curvilinear_mesh()

plot
plt.figure()
plt.contourf(xp, yp, up)
plt.quiver(xi, yi, gradu[0], gradu[1], scale=40, pivot='mid', color='white')
plt.colorbar()
plt.title('Helmholtz - unitdisc')
plt.xticks([])
plt.yticks([])
plt.axis('off')
plt.show()

Fig. 4: Solution of Helmholtz equation, with gradient

7.4. Demo - Helmholtz equation in polar coordinates 59

Shenfun Documentation, Release 2.2.2

7.5 Demo - Kuramato-Sivashinsky equation

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. This is a demonstration of how the Python module shenfun can be used to solve the time-dependent,
nonlinear Kuramato-Sivashinsky equation, in a doubly periodic domain. The demo is implemented in a single Python
file KuramatoSivashinsky.py, and it may be run in parallel using MPI.

7.5.1 The Kuramato-Sivashinsky equation

Movie showing the evolution of the solution 𝑢 from Eq. (7.94).

Model equation

The Kuramato-Sivashinsky (KS) equation is known for its chaotic bahaviour, and it is often used in study of turbulence
or turbulent combustion. We will here solve the KS equation in a doubly periodic domain [−30𝜋, 30𝜋]2, starting from
a single Gaussian pulse

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
+ ∇2𝑢(𝑥, 𝑡) + ∇4𝑢(𝑥, 𝑡) + |∇𝑢(𝑥, 𝑡)|2 = 0 for 𝑥 ∈ Ω = [−30𝜋, 30𝜋]2 (7.94)

𝑢(𝑥, 0) = exp(−0.01𝑥 · 𝑥)

Spectral Galerkin method

The PDE in (7.94) can be solved with many different numerical methods. We will here use the shenfun software and
this software makes use of the spectral Galerkin method. Being a Galerkin method, we need to reshape the governing
equations into proper variational forms, and this is done by multiplying (7.94) with the complex conjugate of a proper
test function and then integrating over the domain. To this end we use testfunction 𝑣 ∈ 𝑉 (Ω), where 𝑉 (Ω) is some
suitable function space, and obtain

𝜕

𝜕𝑡

∫︁
Ω

𝑢 𝑣 𝑤 𝑑𝑥 = −
∫︁
Ω

(︀
∇2𝑢+ ∇4𝑢 + |∇𝑢|2

)︀
𝑣 𝑤 𝑑𝑥. (7.95)

Note that the overline is used to indicate a complex conjugate, whereas 𝑤 is a weight function. The function 𝑢 is now
to be considered a trial function, and the integrals over the domain are often referred to as inner products. With inner
product notation

(𝑢, 𝑣) =

∫︁
Ω

𝑢 𝑣 𝑤 𝑑𝑥.

the variational problem can be formulated as

𝜕

𝜕𝑡
(𝑢, 𝑣) = −

(︀
∇2𝑢+ ∇4𝑢+ |∇𝑢|2, 𝑣

)︀
. (7.96)

The space and time discretizations are still left open. There are numerous different approaches that one could take for
discretizing in time. Here we will use a fourth order exponential Runge-Kutta method.

60 Chapter 7. Demos

https://github.com/spectralDNS/shenfun
https://github.com/spectralDNS/shenfun/blob/master/demo/Kuramato_Sivashinsky.py
https://github.com/spectralDNS/shenfun

Shenfun Documentation, Release 2.2.2

Discretization

We discretize the model equation in space using continuously differentiable Fourier basis functions

𝜑𝑙(𝑥) = 𝑒𝚤𝑙𝑥, −∞ < 𝑙 <∞, (7.97)

where 𝑙 is the wavenumber, and 𝑙 = 2𝜋
𝐿 𝑙 is the scaled wavenumber, scaled with domain length 𝐿 (here 60𝜋). Since we

want to solve these equations on a computer, we need to choose a finite number of test functions. A discrete function
space 𝑉 𝑁 can be defined as

𝑉 𝑁 (𝑥) = span{𝜑𝑙(𝑥)}𝑙∈𝑙, (7.98)

where 𝑁 is chosen as an even positive integer and 𝑙 = (−𝑁/2,−𝑁/2 + 1, . . . , 𝑁/2 − 1). And now, since Ω is a
two-dimensional domain, we can create a tensor product of two such one-dimensional spaces:

𝑊𝑁 (𝑥, 𝑦) = 𝑉 𝑁 (𝑥) ⊗ 𝑉 𝑁 (𝑦), (7.99)

where 𝑁 = (𝑁,𝑁). Obviously, it is not necessary to use the same number (𝑁) of basis functions for each direction,
but it is done here for simplicity. A 2D tensor product basis function is now defined as

Φ𝑙𝑚(𝑥, 𝑦) = 𝑒𝚤𝑙𝑥𝑒𝚤𝑚𝑦 = 𝑒𝚤(𝑙𝑥+𝑚𝑦), (7.100)

where the indices for 𝑦-direction are 𝑚 = 2𝜋
𝐿 𝑚, and 𝑚 is the same set as 𝑙 due to using the same number of basis

functions for each direction. One distinction, though, is that for the 𝑦-direction expansion coefficients are only stored
for 𝑚 = (0, 1, . . . , 𝑁/2) due to Hermitian symmetry (real input data).

We now look for solutions of the form

𝑢(𝑥, 𝑦) =

𝑁/2−1∑︁
𝑙=−𝑁/2

𝑁/2−1∑︁
𝑚=−𝑁/2

𝑢̂𝑙𝑚Φ𝑙𝑚(𝑥, 𝑦). (7.101)

The expansion coefficients 𝑢̂𝑙𝑚 can be related directly to the solution 𝑢(𝑥, 𝑦) using Fast Fourier Transforms (FFTs) if
we are satisfied with obtaining the solution in quadrature points corresponding to

𝑥𝑖 =
60𝜋𝑖

𝑁
− 30𝜋 ∀ 𝑖 ∈ 𝑖,where 𝑖 = (0, 1, . . . , 𝑁 − 1), (7.102)

𝑦𝑗 =
60𝜋𝑗

𝑁
− 30𝜋 ∀ 𝑗 ∈ 𝑗,where 𝑗 = (0, 1, . . . , 𝑁 − 1). (7.103)

Note that these points are different from the standard (like 2𝜋𝑗/𝑁) since the domain is set to [−30𝜋, 30𝜋]2 and not
the more common [0, 2𝜋]2. We now have

𝑢(𝑥𝑖, 𝑦𝑗) = ℱ−1
𝑦

(︀
ℱ−1

𝑥 (𝑢̂)
)︀
∀ (𝑖, 𝑗) ∈ 𝑖× 𝑗, (7.104)

where ℱ−1
𝑥 is the inverse Fourier transform along direction 𝑥, for all 𝑗 ∈ 𝑗. Note that the two inverse FFTs are

performed sequentially, one direction at the time, and that there is no scaling factor due the definition used for the
inverse Fourier transform:

𝑢(𝑥𝑗) =

𝑁/2−1∑︁
𝑙=−𝑁/2

𝑢̂𝑙𝑒
𝚤𝑙𝑥𝑗 , ∀ 𝑗 ∈ 𝑗. (7.105)

Note that this differs from the definition used by, e.g., Numpy.

The inner products used in Eq. (7.96) may be computed using forward FFTs (using weight functions 𝑤 = 1/𝐿):

(𝑢,Φ𝑙𝑚) = 𝑢̂𝑙𝑚 =
1

𝑁2
ℱ𝑙 (ℱ𝑚 (𝑢)) ∀(𝑙,𝑚) ∈ 𝑙×𝑚, (7.106)

7.5. Demo - Kuramato-Sivashinsky equation 61

https://mpi4py-fft.readthedocs.io/en/latest/dft.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.fft.html

Shenfun Documentation, Release 2.2.2

From this we see that the variational forms may be written in terms of the Fourier transformed 𝑢̂. Expanding the exact
derivatives of the nabla operator, we have

(∇2𝑢, 𝑣) = −(𝑙2 +𝑚2)𝑢̂𝑙𝑚, (7.107)

(∇4𝑢, 𝑣) = (𝑙2 +𝑚2)2𝑢̂𝑙𝑚, (7.108)

(|∇𝑢|2, 𝑣) = |̂∇𝑢|2𝑙𝑚 (7.109)

and as such the equation to be solved for each wavenumber can be found directly as

𝜕𝑢̂𝑙𝑚
𝜕𝑡

=
(︀
𝑙2 +𝑚2 − (𝑙2 +𝑚2)2

)︀
𝑢̂𝑙𝑚 − |̂∇𝑢|2𝑙𝑚, (7.110)

7.5.2 Implementation

The model equation (7.94) is implemented in shenfun using Fourier basis functions for both 𝑥 and 𝑦 directions. We
start the solver by implementing necessary functionality from required modules like Numpy, Sympy matplotlib and
mpi4py, in addition to shenfun:

from sympy import symbols, exp, lambdify
import numpy as np
import matplotlib.pyplot as plt
from mpi4py import MPI
from shenfun import *

The size of the problem (in real space) is then specified, before creating the TensorProductSpace, which is using
a tensor product of two Fourier bases as basis functions. We also create a VectorTensorProductSpace, since
this is required for computing the gradient of the scalar field u. The gradient is required for the nonlinear term.

Size of discretization
N = (128, 128)

comm = MPI.COMM_WORLD
K0 = Basis(N[0], 'F', domain=(-30*np.pi, 30*np.pi), dtype='D')
K1 = Basis(N[1], 'F', domain=(-30*np.pi, 30*np.pi), dtype='d')
T = TensorProductSpace(comm, (K0, K1), **{'planner_effort': 'FFTW_MEASURE'})
TV = VectorTensorProductSpace([T, T])

Test and trialfunctions are required for assembling the variational forms:

u = TrialFunction(T)
v = TestFunction(T)

and some arrays are required to hold the solution. We also create an array gradu, that will be used to compute the
gradient in the nonlinear term. Finally, the wavenumbers are collected in list K. Here one feature is worth mentioning.
The gradient in spectral space can be computed as 1j*K*U_hat. However, since this is an odd derivative, and we are
using an even number N for the size of the domain, the highest wavenumber must be set to zero. This is the purpose
of the last keyword argument to local_wavenumbers below.

U = Array(T)
U_hat = Function(T)
gradu = Array(TV)
K = np.array(T.local_wavenumbers(True, True, eliminate_highest_freq=True))

62 Chapter 7. Demos

https://numpy.org
https://sympy.org
https://matplotlib.org
https://bitbucket.org/mpi4py
https://github.com/spectralDNS/shenfun

Shenfun Documentation, Release 2.2.2

Note that using this K in computing derivatives has the same effect as achieved by symmetrizing the Fourier series by
replacing the first sum below with the second when computing odd derivatives.

𝑢 =

𝑁/2−1∑︁
𝑘=−𝑁/2

𝑢̂𝑒𝚤𝑘𝑥 (7.111)

𝑢 =

𝑁/2∑︁′

𝑘=−𝑁/2

𝑢̂𝑒𝚤𝑘𝑥 (7.112)

Here
∑︁′

means that the first and last items in the sum are divided by two. Note that the two sums are equal as they
stand (due to aliasing), but only the latter (known as the Fourier interpolant) gives the correct (zero) derivative of the
basis with the highest wavenumber.

Sympy is used to generate an initial condition, as stated in Eq (7.94)

Use sympy to set up initial condition
x, y = symbols("x,y")
ue = exp(-0.01*(x**2+y**2))
ul = lambdify((x, y), ue, 'numpy')

Shenfun has a few integrators implemented in the integrators submodule. Two such integrators are the 4th
order explicit Runge-Kutta method RK4, and the exponential 4th order Runge-Kutta method ETDRK4. Both these
integrators need two methods provided by the problem being solved, representing the linear and nonlinear terms in the
problem equation. We define two methods below, called LinearRHS and NonlinearRHS

def LinearRHS(self):
Assemble diagonal bilinear forms
L = -(inner(div(grad(u))+div(grad(div(grad(u)))), v))
return L

def NonlinearRHS(self, U, U_hat, dU):
Assemble nonlinear term
global gradu
gradu = TV.backward(1j*K*U_hat, gradu)
dU = T.forward(0.5*(gradu[0]*gradu[0]+gradu[1]*gradu[1]), dU)
return -dU

The code should, hopefully, be self-explanatory.

All that remains now is to initialize the solution arrays and to setup the integrator plus some plotting functionality
for visualizing the results. Note that visualization is only nice when running the code in serial. For parallel, it is
recommended to use HDF5File, to store intermediate results to the HDF5 format, for later viewing in, e.g., Paraview.

The solution is initialized as

#initialize
X = T.local_mesh(True)
U[:] = ul(*X)
U_hat = T.forward(U, U_hat)

And we also create an update function for plotting intermediate results with a cool colormap:

Integrate using an exponential time integrator
plt.figure()
cm = plt.get_cmap('hot')
image = plt.contourf(X[0], X[1], U, 256, cmap=cm)

(continues on next page)

7.5. Demo - Kuramato-Sivashinsky equation 63

Shenfun Documentation, Release 2.2.2

(continued from previous page)

plt.draw()
plt.pause(1e-6)
count = 0
def update(u, u_hat, t, tstep, **params):

global count
if tstep % params['plot_step'] == 0 and params['plot_step'] > 0:

u = T.backward(u_hat, u)
image.ax.clear()
image.ax.contourf(X[0], X[1], U, 256, cmap=cm)
plt.pause(1e-6)
count += 1
plt.savefig('Kuramato_Sivashinsky_N_{}_{}.png'.format(N[0], count))

Now all that remains is to create the integrator and call it

if __name__ == '__main__':
par = {'plot_step': 100}
dt = 0.01
end_time = 100
integrator = ETDRK4(T, L=LinearRHS, N=NonlinearRHS, update=update, **par)
#integrator = RK4(T, L=LinearRHS, N=NonlinearRHS, update=update, **par)
integrator.setup(dt)
U_hat = integrator.solve(U, U_hat, dt, (0, end_time))

7.6 Demo - Stokes equations

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. The Stokes equations describe the flow of highly viscous fluids. This is a demonstration of how the Python
module shenfun can be used to solve Stokes equations using a mixed (coupled) basis in a 3D tensor product domain.
We assume homogeneous Dirichlet boundary conditions in one direction and periodicity in the remaining two. The
solver described runs with MPI without any further considerations required from the user. The solver assembles a
block matrix with sparsity pattern as shown below for the Legendre basis.

7.6.1 Model problem

Stokes equations

The Stokes equations are given in strong form as

∇2u−∇𝑝 = f in Ω,

∇ · u = ℎ in Ω∫︁
Ω

𝑝𝑑𝑥 = 0

where u and 𝑝 are, respectively, the fluid velocity vector and pressure, and the domain Ω = [0, 2𝜋]2 × [−1, 1]. The
flow is assumed periodic in 𝑥 and 𝑦-directions, whereas there is a no-slip homogeneous Dirichlet boundary condition
on u on the boundaries of the 𝑧-direction, i.e., u(𝑥, 𝑦,±1) = (0, 0, 0). (Note that we can configure shenfun with
non-periodicity in any of the three directions. However, since we are to solve linear algebraic systems in the non-
periodic direction, there is a speed benefit from having the nonperiodic direction last. This has to do with Numpy

64 Chapter 7. Demos

https://github.com/spectralDNS/shenfun

Shenfun Documentation, Release 2.2.2

Fig. 5: Coupled block matrix for Stokes equations

7.6. Demo - Stokes equations 65

Shenfun Documentation, Release 2.2.2

using a C-style row-major storage of arrays by default.) The right hand side vector f(x) is an external applied body
force. The right hand side ℎ is usually zero in the regular Stokes equations. Here we include it because it will be
nonzero in the verification, which is using the method of manufactured solutions. Note that the final

∫︀
Ω
𝑝𝑑𝑥 = 0 is

there because there is no Dirichlet boundary condition on the pressure and the system of equations would otherwise
be ill conditioned.

To solve Stokes equations with the Galerkin method we need basis functions for both velocity and pressure. A Dirich-
let basis will be used for velocity, whereas there is no boundary restriction on the pressure basis. For both three-
dimensional bases we will use one basis function for the 𝑥-direction, 𝒳 (𝑥), one for the 𝑦-direction, 𝒴(𝑦), and one for
the 𝑧-direction, 𝒵(𝑧). And then we create three-dimensional basis functions like

𝑣(𝑥, 𝑦, 𝑧) = 𝒳 (𝑥)𝒴(𝑦)𝒵(𝑧). (7.113)

The basis functions 𝒳 (𝑥) and 𝒴(𝑦) are chosen as Fourier exponentials, since these functions are periodic:

𝒳𝑙(𝑥) = 𝑒𝚤𝑙𝑥,∀ 𝑙 ∈ l𝑁0 , (7.114)

𝒴𝑚(𝑦) = 𝑒𝚤𝑚𝑦,∀𝑚 ∈ m𝑁1 , (7.115)

where l𝑁0 = (−𝑁0/2,−𝑁0/2 + 1, . . . , 𝑁0/2− 1) and m𝑁1 = (−𝑁1/2,−𝑁1/2 + 1, . . . , 𝑁1/2− 1). The size of the
discretized problem in real physical space is N = (𝑁0, 𝑁1, 𝑁2), i.e., there are 𝑁0 ·𝑁1 ·𝑁2 quadrature points in total.

The basis functions for 𝒵(𝑧) remain to be decided. For the velocity we need homogeneous Dirichlet boundary condi-
tions, and for this we use composite Legendre or Chebyshev polynomials

𝒵0
𝑛(𝑧) = 𝜑𝑛(𝑧) − 𝜑𝑛+2(𝑧),∀𝑛 ∈ n𝑁2−2, (7.116)

where 𝜑𝑛 is the n’th Legendre or Chebyshev polynomial of the first kind. n𝑁2−2 = (0, 1, . . . , 𝑁2 − 3), and the zero
on 𝒵0 is there to indicate the zero value on the boundary.

The pressure basis that comes with no restrictions for the boundary is a little trickier. The reason for this has to do
with inf-sup stability. The obvious choice of basis is the regular Legendre or Chebyshev basis, which is denoted as

𝒵𝑛(𝑧) = 𝜑𝑛(𝑧),∀𝑛 ∈ n𝑁2 . (7.117)

The problem is that for the natural choice of 𝑛 ∈ (0, 1, . . . , 𝑁2 − 1) there is a nullspace and one degree of freedom
remains unresolved. It turns out that the proper choice for the pressure basis is simply (7.117) for 𝑛 ∈ n𝑁2−2. (Also
remember that we have to fix

∫︀
Ω
𝑝𝑑𝑥 = 0.)

With given basis functions we obtain the spaces

𝑉 𝑁0 = span{𝒳𝑙}𝑙∈l𝑁0 , (7.118)

𝑉 𝑁1 = span{𝒴𝑚}𝑚∈m𝑁1 , (7.119)

𝑉 𝑁2 = span{𝒵𝑛}𝑛∈n𝑁2−2 , (7.120)

𝑉 𝑁2
0 = span{𝒵0

𝑛}𝑛∈n𝑁2−2 , (7.121)

and from these we create two different tensor product spaces

𝑊N
0 (x) = 𝑉 𝑁0(𝑥) ⊗ 𝑉 𝑁1(𝑦) ⊗ 𝑉 𝑁2

0 (𝑧), (7.122)

𝑊N(x) = 𝑉 𝑁0(𝑥) ⊗ 𝑉 𝑁1(𝑦) ⊗ 𝑉 𝑁2(𝑧). (7.123)

The velocity vector is using a mixed basis, such that we will look for solutions u ∈ [𝑊N
0]3 (= 𝑊N

0 ×𝑊N
0 ×𝑊N

0),
whereas we look for the pressure 𝑝 ∈𝑊N. We now formulate a variational problem using the Galerkin method: Find
u ∈ [𝑊N

0]3 and 𝑝 ∈𝑊N such that∫︁
Ω

(∇2u−∇𝑝) · v 𝑑𝑥𝑤 =

∫︁
Ω

f · v 𝑑𝑥𝑤 ∀v ∈ [𝑊N
0]3, (7.124)

66 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

∫︁
Ω

∇ · u 𝑞 𝑑𝑥𝑤 =

∫︁
Ω

ℎ𝑞 𝑑𝑥𝑤 ∀𝑞 ∈ 𝑊N. (7.125)

Here 𝑑𝑥𝑤 = 𝑤𝑥𝑑𝑥𝑤𝑦𝑑𝑦𝑤𝑧𝑑𝑧 represents a weighted measure, with weights 𝑤𝑥(𝑥), 𝑤𝑦(𝑦), 𝑤𝑧(𝑧). Note that it is
only Chebyshev polynomials that make use of a non-constant weight 𝑤𝑥 = 1/

√
1 − 𝑥2. The Fourier weights are

𝑤𝑦 = 𝑤𝑧 = 1/(2𝜋) and the Legendre weight is 𝑤𝑥 = 1. The overline in v and 𝑞 represents a complex conjugate,
which is needed here because the Fourier exponentials are complex functions.

Mixed variational form

Since we are to solve for u and 𝑝 at the same time, we formulate a mixed (coupled) problem: find (u, 𝑝) ∈ [𝑊N
0]3 ×

𝑊N such that

𝑎((u, 𝑝), (v, 𝑞)) = 𝐿((v, 𝑞)) ∀(v, 𝑞) ∈ [𝑊N
0]3 ×𝑊N, (7.126)

where bilinear (𝑎) and linear (𝐿) forms are given as

𝑎((u, 𝑝), (v, 𝑞)) =

∫︁
Ω

(∇2u−∇𝑝) · v 𝑑𝑥𝑤 +

∫︁
Ω

∇ · u 𝑞 𝑑𝑥𝑤, (7.127)

𝐿((v, 𝑞)) =

∫︁
Ω

f · v 𝑑𝑥𝑤 +

∫︁
Ω

ℎ𝑞 𝑑𝑥𝑤. (7.128)

Note that the bilinear form will assemble to block matrices, whereas the right hand side linear form will assemble to
block vectors.

7.6.2 Implementation

Preamble

We will solve the Stokes equations using the shenfun Python module. The first thing needed is then to import some of
this module’s functionality plus some other helper modules, like Numpy and Sympy:

import os
import sys
import numpy as np
from mpi4py import MPI
from sympy import symbols, sin, cos
from shenfun import *

We use Sympy for the manufactured solution and Numpy for testing. MPI for Python (mpi4py) is required for
running the solver with MPI.

Manufactured solution

The exact solutions u𝑒(x) and 𝑝(x) are chosen to satisfy boundary conditions, and the right hand sides f(x) and ℎ(x)
are then computed exactly using Sympy. These exact right hand sides will then be used to compute a numerical
solution that can be verified against the manufactured solution. The chosen solution with computed right hand sides
are:

x, y, z = symbols('x,y,z')
uex = sin(2*y)*(1-z**2)
uey = sin(2*x)*(1-z**2)
uez = sin(2*z)*(1-z**2)

(continues on next page)

7.6. Demo - Stokes equations 67

https://github.com/spectralDNS/shenfun
https://numpy.org
https://sympy.org

Shenfun Documentation, Release 2.2.2

(continued from previous page)

pe = -0.1*sin(2*x)*cos(4*y)
fx = uex.diff(x, 2) + uex.diff(y, 2) + uex.diff(z, 2) - pe.diff(x, 1)
fy = uey.diff(x, 2) + uey.diff(y, 2) + uey.diff(z, 2) - pe.diff(y, 1)
fz = uez.diff(x, 2) + uez.diff(y, 2) + uez.diff(z, 2) - pe.diff(z, 1)
h = uex.diff(x, 1) + uey.diff(y, 1) + uez.diff(z, 1)

Bases and tensor product spaces

Bases are created using the Basis() function. A choice of polynomials between Legendre or Chebyshev can be
made, and the size of the domain is given

N = (40, 40, 40)
family = 'Legendre'
K0 = Basis(N[0], 'Fourier', dtype='D', domain=(0, 2*np.pi))
K1 = Basis(N[1], 'Fourier', dtype='d', domain=(0, 2*np.pi))
SD = Basis(N[2], family, bc=(0, 0))
ST = Basis(N[2], family)
ST.slice = lambda: slice(0, ST.N-2)

Note that the last line of code is there to ensure that only the first 𝑁2 − 2 coefficients are used, see discussion around
Eq. (7.117). At the same time, we ensure that we are still using 𝑁2 quadrature points, the same as for the Dirichlet
basis.

Next the one-dimensional spaces are used to create two tensor product spaces Q = 𝑊N and TD = 𝑊N
0 , one vector V

= [𝑊N
0]3 and one mixed space VQ = V × Q.

TD = TensorProductSpace(comm, (K0, K1, SD), axes=(2, 0, 1))
Q = TensorProductSpace(comm, (K0, K1, ST), axes=(2, 0, 1))
V = VectorTensorProductSpace(TD)
VQ = MixedTensorProductSpace([V, Q])

Note that we choose to transform axes in the order 1, 0, 2. This is to ensure that the fully transformed arrays are aligned
in the non-periodic direction 2. And we need the arrays aligned in this direction, because this is the only direction
where there are tensor product matrices that are non-diagonal. All Fourier matrices are, naturally, diagonal.

Test- and trialfunctions are created much like in a regular, non-mixed, formulation. However, one has to create one
test- and trialfunction for the mixed space, and then split them up afterwards

up = TrialFunction(VQ)
vq = TestFunction(VQ)
u, p = up
v, q = vq

With the basisfunctions in place we may assemble the different blocks of the final coefficient matrix. Since Legendre
is using a constant weight function, the equations may also be integrated by parts to obtain a symmetric system:

if family.lower() == 'chebyshev':
A = inner(v, div(grad(u)))
G = inner(v, -grad(p))

else:
A = inner(grad(v), -grad(u))
G = inner(div(v), p)

D = inner(q, div(u))

Note: The inner products may also be assembled with one single line, as

68 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

AA = inner(v, div(grad(u))) + inner(v, -grad(u)) + inner(q, div(u))

However, this requires addition, not subtraction, of inner products and it is not possible to move the negation to
-inner(v, grad(u))

The assembled subsystems A, G and D are lists containg the different blocks of the complete, coupled matrix. A
actually contains 6 tensor product matrices of type TPMatrix. The first two matrices are for vector component zero
of the test function v[0] and trial function u[0], the matrices 2 and 3 are for components 1 and the last two are for
components 2. The first two matrices are as such for

A[0:2] = inner(v[0], div(grad(u[0])))

Breaking it down the inner product is mathematically∫︁
Ω

v[0]

(︂
𝜕2u[0]

𝜕𝑥2
+
𝜕2u[0]

𝜕𝑦2
+
𝜕2u[0]

𝜕𝑧2

)︂
𝑤𝑥𝑑𝑥𝑤𝑦𝑑𝑦𝑤𝑧𝑑𝑧. (7.129)

If we now use test function v[0]

v[0]𝑙𝑚𝑛 = 𝒳𝑙𝒴𝑚𝒵𝑛, (7.130)

and trialfunction

u[0]𝑝𝑞𝑟 =
∑︁
𝑝

∑︁
𝑞

∑︁
𝑟

û[0]𝑝𝑞𝑟𝒳𝑝𝒴𝑞𝒵𝑟, (7.131)

where û are the unknown degrees of freedom, and then insert these functions into (7.129), then we obtain after
performing some exact evaluations over the periodic directions(︁

−
(︀
𝑙2𝛿𝑙𝑝 +𝑚2𝛿𝑚𝑞

)︀ ∫︁ 1

−1

𝒵𝑟(𝑧)𝒵𝑛(𝑧)𝑤𝑧𝑑𝑧⏟ ⏞
𝐴[0]

+ 𝛿𝑙𝑝𝛿𝑚𝑞

∫︁ 1

−1

𝜕2𝒵𝑟(𝑧)

𝜕𝑧2
𝒵𝑛(𝑧)𝑤𝑧𝑑𝑧⏟ ⏞

𝐴[1]

)︁
û[0]𝑝𝑞𝑟,

(7.132)

Similarly for components 1 and 2 of the test and trial vectors, leading to 6 tensor product matrices in total for A.
Similarly, we get three components of G and three of D.

Eliminating the Fourier diagonal matrices, we are left with block matrices like

𝐻(𝑙,𝑚) =

⎡⎢⎢⎣
𝐴[0] +𝐴[1] 0 0 𝐺[0]

0 𝐴[2] +𝐴[3] 0 𝐺[1]
0 0 𝐴[4] +𝐴[5] 𝐺[2]

𝐷[0] 𝐷[1] 𝐷[2] 0

⎤⎥⎥⎦ (7.133)

Note that there will be one large block matrix 𝐻(𝑙,𝑚) for each Fourier wavenumber combination (𝑙,𝑚). To solve the
problem in the end we will need to loop over these wavenumbers and solve the assembled linear systems one by one.
An example of the block matrix, for 𝑙 = 𝑚 = 5 and N = (20, 20, 20) is given in Fig. Coupled block matrix for Stokes
equations.

In the end we create a block matrix through

M = BlockMatrix(A+G+D)

The right hand side can easily be assembled since we have already defined the functions f and ℎ, see Sec. Manufac-
tured solution

7.6. Demo - Stokes equations 69

Shenfun Documentation, Release 2.2.2

Get mesh (quadrature points)
X = TD.local_mesh(True)

Get f and h on quad points
fh = Array(VQ, buffer=(fx, fy, fz, h))
f_, h_ = fh

Compute inner products
fh_hat = Function(VQ)
f_hat, h_hat = fh_hat
f_hat = inner(v, f_, output_array=f_hat)
h_hat = inner(q, h_, output_array=h_hat)

In the end all that is left is to solve and compare with the exact solution.

Solve problem
up_hat = M.solve(fh_hat, constraints=((3, 0, 0),))
up = up_hat.backward()
u_, p_ = up

Exact solution
ux, uy, uz = Array(V, buffer=(uex, uey, uez))
pe = Array(Q, buffer=pe)

error = [comm.reduce(np.linalg.norm(ux-u_[0])),
comm.reduce(np.linalg.norm(uy-u_[1])),
comm.reduce(np.linalg.norm(uz-u_[2])),
comm.reduce(np.linalg.norm(pe-p_))]

print(error)

Note that solve has a keyword argument constraints=((3, 0, 0),) that takes care of the restriction
∫︀
Ω
𝑝𝑑𝑥 =

0 by indenting the row in M corresponding to the first degree of freedom for the pressure. The value (3, 0, 0) indicates
that pressure is in block 3 of the block vector solution (the velocity vector holds positions 0, 1 and 2), whereas the two
zeros ensures that the first dof (dof 0) should obtain value 0.

Complete solver

A complete solver can be found in demo Stokes3D.py.

7.7 Demo - Lid driven cavity

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. The lid driven cavity is a classical benchmark for Navier Stokes solvers. This is a demonstration of how
the Python module shenfun can be used to solve the lid driven cavity problem with full spectral accuracy using a
mixed (coupled) basis in a 2D tensor product domain. The demo also shows how to use mixed tensor product spaces
for vector valued equations. Note that the regular lid driven cavity, where the top wall has constant velocity and the
remaining three walls are stationary, has a singularity at the two upper corners, where the velocity is discontinuous.
Due to their global nature, spectral methods are usually not very good at handling problems with discontinuities, and
for this reason we will also look at a regularized lid driven cavity, where the top lid moves according to (1−𝑥)2(1+𝑥)2,
thus removing the corner discontinuities.

70 Chapter 7. Demos

https://github.com/spectralDNS/shenfun/blob/master/demo/Stokes3D.py
https://github.com/spectralDNS/shenfun

Shenfun Documentation, Release 2.2.2

Fig. 6: Velocity vectors for 𝑅𝑒 = 100

7.7. Demo - Lid driven cavity 71

Shenfun Documentation, Release 2.2.2

7.7.1 Navier Stokes equations

The nonlinear steady Navier Stokes equations are given in strong form as

𝜈∇2𝑢−∇𝑝 = ∇ · 𝑢𝑢 in Ω,

∇ · 𝑢 = 0 in Ω∫︁
Ω

𝑝𝑑𝑥 = 0

𝑢(𝑥, 𝑦 = 1) = (1, 0) or 𝑢(𝑥, 𝑦 = 1) = ((1 − 𝑥)2(1 + 𝑥)2, 0)

𝑢(𝑥, 𝑦 = −1) = (0, 0)

𝑢(𝑥 = ±1, 𝑦) = (0, 0)

where 𝑢, 𝑝 and 𝜈 are, respectively, the fluid velocity vector, pressure and kinematic viscosity. The domain Ω = [−1, 1]2

and the nonlinear term 𝑢𝑢 is the outer product of vector 𝑢 with itself. Note that the final
∫︀
Ω
𝑝𝑑𝑥 = 0 is there

because there is no Dirichlet boundary condition on the pressure and the system of equations would otherwise be ill
conditioned.

We want to solve these steady nonlinear Navier Stokes equations with the Galerkin method, using the shenfun Python
package. The first thing we need to do then is to import all of shenfun’s functionality

import matplotlib.pyplot as plt
from shenfun import *
from mpi4py import MPI
comm = MPI.COMM_WORLD

Note that MPI for Python (mpi4py) is a requirement for shenfun, but the current solver cannot be used with more than
one processor.

7.7.2 Bases and tensor product spaces

With the Galerkin method we need basis functions for both velocity and pressure, as well as for the nonlinear right
hand side. A Dirichlet basis will be used for velocity, whereas there is no boundary restriction on the pressure basis.
For both two-dimensional bases we will use one basis function for the 𝑥-direction, 𝒳𝑘(𝑥), and one for the 𝑦-direction,
𝒴𝑙(𝑦). And then we create two-dimensional basis functions like

𝑣𝑘𝑙(𝑥, 𝑦) = 𝒳𝑘(𝑥)𝒴𝑙(𝑦), (7.134)

and solutions (trial functions) as

𝑢(𝑥, 𝑦) =
∑︁
𝑘

∑︁
𝑙

𝑢̂𝑘𝑙𝑣𝑘𝑙(𝑥, 𝑦). (7.135)

For the homogeneous Dirichlet boundary condition the basis functions 𝒳𝑘(𝑥) and 𝒴𝑙(𝑦) are chosen as composite
Legendre polynomials (we could also use Chebyshev):

𝒳𝑘(𝑥) = 𝐿𝑘(𝑥) − 𝐿𝑘+2(𝑥), ∀ 𝑘 ∈ 𝑘𝑁0−2, (7.136)

𝒴𝑙(𝑦) = 𝐿𝑙(𝑦) − 𝐿𝑙+2(𝑦), ∀ 𝑙 ∈ 𝑙𝑁1−2, (7.137)

where 𝑘𝑁0−2 = (0, 1, . . . , 𝑁0 − 3), 𝑙𝑁1−2 = (0, 1, . . . , 𝑁1 − 3) and 𝑁 = (𝑁0, 𝑁1) is the number of quadrature
points in each direction. Note that 𝑁0 and 𝑁1 do not need to be the same. The basis funciton (7.136) satisfies the
homogeneous Dirichlet boundary conditions at 𝑥 = ±1 and (7.137) the same at 𝑦 = ±1. As such, the basis function
𝑣𝑘𝑙(𝑥, 𝑦) satisfies the homogeneous Dirichlet boundary condition for the entire domain.

With shenfun we create these homogeneous spaces, 𝐷𝑁0
0 (𝑥) = span{𝐿𝑘 − 𝐿𝑘+2}𝑁0−2

𝑘=0 and 𝐷𝑁1
0 (𝑦) = span{𝐿𝑙 −

𝐿𝑙+2}𝑁1−2
𝑙=0 as

72 Chapter 7. Demos

https://github.com/spectralDNS/shenfun
https://bitbucket.org/mpi4py/mpi4py

Shenfun Documentation, Release 2.2.2

N = (51, 51)
family = 'Legendre' # or use 'Chebyshev'
quad = 'LG' # for Chebyshev use 'GC' or 'GL'
D0X = Basis(N[0], family, quad=quad, bc=(0, 0))
D0Y = Basis(N[1], family, quad=quad, bc=(0, 0))

The spaces are here the same, but we will use D0X in the 𝑥-direction and D0Y in the 𝑦-direction. But before we use
these bases in tensor product spaces, they remain identical as long as 𝑁0 = 𝑁1.

Special attention is required by the moving lid. To get a solution with nonzero boundary condition at 𝑦 = 1 we need
to add one more basis function that satisfies that solution. In general, a nonzero boundary condition can be added on
both sides of the domain using the following basis

𝒴𝑙(𝑦) = 𝐿𝑙(𝑦) − 𝐿𝑙+2(𝑦), ∀ 𝑙 ∈ 𝑙𝑁1−2. (7.138)

𝒴𝑁1−2(𝑦) = (𝐿0 + 𝐿1)/2 (= (1 + 𝑦)/2) , (7.139)

𝒴𝑁1−1(𝑦) = (𝐿0 − 𝐿1)/2 (= (1 − 𝑦)/2) . (7.140)

And then the unknown component 𝑁1 − 2 decides the value at 𝑦 = 1, whereas the unknown at 𝑁1 − 1 decides the
value at 𝑦 = −1. Here we only need to add the 𝑁1 − 2 component, but for generality this is implemented in shenfun
using both additional basis functions. We create the space 𝐷𝑁1

1 (𝑦) = span{𝒴𝑙(𝑦)}𝑁1−1
𝑙=0 as

D1Y = Basis(N[1], family, quad=quad, bc=(1, 0))

where bc=(1, 0) fixes the values for 𝑦 = 1 and 𝑦 = −1, respectively. For a regularized lid driven cavity the
velocity of the top lid is (1 − 𝑥)2(1 + 𝑥)2 and not unity. To implement this boundary condition instead, we can make
use of sympy and quite straight forward do

import sympy
x = sympy.symbols('x')
#D1Y = Basis(N[1], family, quad=quad, bc=((1-x)**2*(1+x)**2, 0))

Uncomment the last line to run the regularized boundary conditions. Otherwise, there is no difference at all between
the regular and the regularized lid driven cavity implementations.

The pressure basis that comes with no restrictions for the boundary is a little trickier. The reason for this has to do with
inf-sup stability. The obvious choice of basis functions are the regular Legendre polynomials 𝐿𝑘(𝑥) in 𝑥 and 𝐿𝑙(𝑦) in
the 𝑦-directions. The problem is that for the natural choice of (𝑘, 𝑙) ∈ 𝑘𝑁0 × 𝑙𝑁1 there are nullspaces and the problem
is not well-defined. It turns out that the proper choice for the pressure basis is simply the regular Legendre basis
functions, but for (𝑘, 𝑙) ∈ 𝑘𝑁0−2× 𝑙𝑁1−2. The bases 𝑃𝑁0(𝑥) = span{𝐿𝑘(𝑥)}𝑁0−3

𝑘=0 and 𝑃𝑁1(𝑦) = span{𝐿𝑙(𝑦)}𝑁1−3
𝑙=0

are created as

PX = Basis(N[0], family, quad=quad)
PY = Basis(N[1], family, quad=quad)
PX.slice = lambda: slice(0, N[0]-2)
PY.slice = lambda: slice(0, N[1]-2)

Note that we still use these spaces with the same𝑁0 ·𝑁1 quadrature points in real space, but the two highest frequencies
have been set to zero.

We have now created all relevant function spaces for the problem at hand. It remains to combine these spaces into
tensor product spaces, and to combine tensor product spaces into mixed (coupled) tensor product spaces. From the
Dirichlet bases we create two different tensor product spaces, whereas one is enough for the pressure

𝑉 𝑁
1 (𝑥) = 𝐷𝑁0

0 (𝑥) ⊗𝐷𝑁1
1 (𝑦), (7.141)

𝑉 𝑁
0 (𝑥) = 𝐷𝑁0

0 (𝑥) ⊗𝐷𝑁1
0 (𝑦), (7.142)

7.7. Demo - Lid driven cavity 73

https://www.sympy.org

Shenfun Documentation, Release 2.2.2

𝑃𝑁 (𝑥) = 𝑃𝑁0(𝑥) ⊗ 𝑃𝑁1(𝑦). (7.143)

With shenfun the tensor product spaces are created as

V1 = TensorProductSpace(comm, (D0X, D1Y))
V0 = TensorProductSpace(comm, (D0X, D0Y))
P = TensorProductSpace(comm, (PX, PY))

These tensor product spaces are all scalar valued. The velocity is a vector, and a vector requires a mixed vector basis
like 𝑊𝑁

1 = 𝑉 𝑁
1 × 𝑉 𝑁

0 . The vector basis is created in shenfun as

W1 = VectorTensorProductSpace([V1, V0])
W0 = VectorTensorProductSpace([V0, V0])

Note that the second vector basis, 𝑊𝑁
0 = 𝑉 𝑁

0 × 𝑉 𝑁
0 , uses homogeneous boundary conditions throughout.

7.7.3 Mixed variational form

We now formulate a variational problem using the Galerkin method: Find 𝑢 ∈𝑊𝑁
1 and 𝑝 ∈ 𝑃𝑁 such that∫︁

Ω

(𝜈∇2𝑢−∇𝑝) · 𝑣 𝑑𝑥𝑑𝑦 =

∫︁
Ω

(∇ · 𝑢𝑢) · 𝑣 𝑑𝑥𝑑𝑦 ∀𝑣 ∈ 𝑊𝑁
0 , (7.144)∫︁

Ω

∇ · 𝑢 𝑞 𝑑𝑥𝑑𝑦 = 0 ∀𝑞 ∈ 𝑃𝑁 . (7.145)

Note that we are using test functions 𝑣 with homogeneous boundary conditions.

The first obvious issue with Eq (7.144) is the nonlinearity. In other words we will need to linearize and iterate to
be able to solve these equations with the Galerkin method. To this end we will introduce the solution on iteration
𝑘 ∈ [0, 1, . . .] as 𝑢𝑘 and compute the nonlinearity using only known solutions

∫︀
Ω

(∇ · 𝑢𝑘𝑢𝑘) · 𝑣 𝑑𝑥𝑑𝑦. Using further
integration by parts we end up with the equations to solve for iteration number 𝑘 + 1 (using 𝑢 = 𝑢𝑘+1 and 𝑝 = 𝑝𝑘+1

for simplicity)

−
∫︁
Ω

𝜈∇𝑢 : ∇𝑣 𝑑𝑥𝑑𝑦 +

∫︁
Ω

𝑝∇ · 𝑣 𝑑𝑥𝑑𝑦 =

∫︁
Ω

(∇ · 𝑢𝑘𝑢𝑘) · 𝑣 𝑑𝑥𝑑𝑦 ∀𝑣 ∈ 𝑊𝑁
0 , (7.146)∫︁

Ω

∇ · 𝑢 𝑞 𝑑𝑥𝑑𝑦 = 0 ∀𝑞 ∈ 𝑃𝑁 . (7.147)

Note that the nonlinear term may also be integrated by parts and evaluated as
∫︀
Ω
−𝑢𝑘𝑢𝑘 : ∇𝑣 𝑑𝑥𝑑𝑦. All boundary

integrals disappear since we are using test functions with homogeneous boundary conditions.

Since we are to solve for 𝑢 and 𝑝 at the same time, we formulate a mixed (coupled) problem: find (𝑢, 𝑝) ∈𝑊𝑁
1 ×𝑃𝑁

such that

𝑎((𝑢, 𝑝), (𝑣, 𝑞)) = 𝐿((𝑣, 𝑞)) ∀(𝑣, 𝑞) ∈𝑊𝑁
0 × 𝑃𝑁 , (7.148)

where bilinear (𝑎) and linear (𝐿) forms are given as

𝑎((𝑢, 𝑝), (𝑣, 𝑞)) = −
∫︁
Ω

𝜈∇𝑢 : ∇𝑣 𝑑𝑥𝑑𝑦 +

∫︁
Ω

𝑝∇ · 𝑣 𝑑𝑥𝑑𝑦 +

∫︁
Ω

∇ · 𝑢 𝑞 𝑑𝑥𝑑𝑦, (7.149)

𝐿((𝑣, 𝑞);𝑢𝑘) =

∫︁
Ω

(∇ · 𝑢𝑘𝑢𝑘) · 𝑣 𝑑𝑥𝑑𝑦. (7.150)

Note that the bilinear form will assemble to a block matrix, whereas the right hand side linear form will assemble to
a block vector. The bilinear form does not change with the solution and as such it does not need to be reassembled
inside an iteration loop.

The algorithm used to solve the equations are:

74 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

• Set 𝑘 = 0

• Guess 𝑢0 = (0, 0)

• while not converged:

– assemble 𝐿((𝑣, 𝑞);𝑢𝑘)

– solve 𝑎((𝑢, 𝑝), (𝑣, 𝑞)) = 𝐿((𝑣, 𝑞);𝑢𝑘) for 𝑢𝑘+1, 𝑝𝑘+1

– compute error =
∫︀
Ω

(𝑢𝑘+1 − 𝑢𝑘)2 𝑑𝑥𝑑𝑦

– if error < some tolerance then converged = True

– 𝑘 += 1

7.7.4 Implementation of solver

We will now implement the coupled variational problem described in previous sections. First of all, since we want
to solve for the velocity and pressure in a coupled solver, we have to create a mixed tensor product space 𝑉 𝑄 =
𝑊𝑁

1 × 𝑃𝑁 that couples velocity and pressure

VQ = MixedTensorProductSpace([W1, P]) # Coupling velocity and pressure

We can now create test- and trialfunctions for the coupled space 𝑉 𝑄, and then split them up into components after-
wards:

up = TrialFunction(VQ)
vq = TestFunction(VQ)
u, p = up
v, q = vq

Note: The test function v is using homogeneous Dirichlet boundary conditions even though it is derived from VQ,
which contains W1. It is currently not (and will probably never be) possible to use test functions with inhomogeneous
boundary conditions.

With the basisfunctions in place we may assemble the different blocks of the final coefficient matrix. For this we also
need to specify the kinematic viscosity, which is given here in terms of the Reynolds number:

Re = 100.
nu = 2./Re
A = inner(grad(v), -nu*grad(u))
G = inner(div(v), p)
D = inner(q, div(u))

Note: The inner products may also be assembled with one single line, as

AA = inner(grad(v), -nu*grad(u)) + inner(div(v), p) + inner(q, div(u))

But note that this requires addition, not subtraction, of inner products, and it is not possible to move the negation
to -inner(grad(v), nu*grad(u)). This is because the inner() function returns a list of tensor product
matrices of type TPMatrix, and you cannot negate a list.

The assembled subsystems A, G and D are lists containg the different blocks of the complete, coupled, coefficient
matrix. A actually contains 4 tensor product matrices of type TPMatrix. The first two matrices are for vector

7.7. Demo - Lid driven cavity 75

Shenfun Documentation, Release 2.2.2

component zero of the test function v[0] and trial function u[0], the matrices 2 and 3 are for components 1. The
first two matrices are as such for

A[0:2] = inner(grad(v[0]), -nu*grad(u[0]))

Breaking it down the inner product is mathematically∫︁
Ω

−𝜈
(︂
𝜕𝑣[0]

𝜕𝑥
,
𝜕𝑣[0]

𝜕𝑦

)︂
·
(︂
𝜕𝑢[0]

𝜕𝑥
,
𝜕𝑢[0]

𝜕𝑦

)︂
𝑑𝑥𝑑𝑦. (7.151)

We can now insert for test function 𝑣[0]

𝑣[0]𝑘𝑙 = 𝒳𝑘𝒴𝑙, (𝑘, 𝑙) ∈ 𝑘𝑁0−2 × 𝑙𝑁1−2 (7.152)

and trialfunction

𝑢[0]𝑚𝑛 =

𝑁0−3∑︁
𝑚=0

𝑁1−1∑︁
𝑛=0

𝑢̂[0]𝑚𝑛𝒳𝑚𝒴𝑛, (7.153)

where 𝑢̂ are the unknown degrees of freedom for the velocity vector. Notice that the sum over the second index runs
all the way to 𝑁1 − 1, whereas the other indices runs to either 𝑁0 − 3 or 𝑁1 − 3. This is because of the additional
basis functions required for the inhomogeneous boundary condition.

Inserting for these basis functions into (7.129), we obtain after a few trivial manipulations

−
𝑁0−3∑︁
𝑚=0

𝑁1−1∑︁
𝑛=0

𝜈
(︁∫︁ 1

−1

𝜕𝒳𝑘(𝑥)

𝜕𝑥

𝜕𝒳𝑚

𝜕𝑥
𝑑𝑥

∫︁ 1

−1

𝒴𝑙𝒴𝑛𝑑𝑦⏟ ⏞
𝐴[0]

+

∫︁ 1

−1

𝒳𝑘(𝑥)𝑋𝑚(𝑥)𝑑𝑥

∫︁ 1

−1

𝜕𝒴𝑙

𝜕𝑦

𝜕𝒴𝑛

𝜕𝑦
𝑑𝑦⏟ ⏞

𝐴[1]

)︁
𝑢̂[0]𝑚𝑛. (7.154)

We see that each tensor product matrix (both A[0] and A[1]) is composed as outer products of two smaller matrices,
one for each dimension. The first tensor product matrix, A[0], is∫︁ 1

−1

𝜕𝒳𝑘(𝑥)

𝜕𝑥

𝜕𝒳𝑚

𝜕𝑥
𝑑𝑥⏟ ⏞

𝑐𝑘𝑚

∫︁ 1

−1

𝒴𝑙𝒴𝑛𝑑𝑦⏟ ⏞
𝑓𝑙𝑛

(7.155)

where 𝐶 ∈ R𝑁0−2×𝑁1−2 and 𝐹 ∈ R𝑁0−2×𝑁1 . Note that due to the inhomogeneous boundary conditions this last
matrix 𝐹 is actually not square. However, remember that all contributions from the two highest degrees of freedom
(𝑢̂[0]𝑚,𝑁1−2 and 𝑢̂[0]𝑚,𝑁1−1) are already known and they can, as such, be moved directly over to the right hand
side of the linear algebra system that is to be solved. More precisely, we can split the tensor product matrix into two
contributions and obtain
𝑁0−3∑︁
𝑚=0

𝑁1−1∑︁
𝑛=0

𝑐𝑘𝑚𝑓𝑙𝑛𝑢̂[0]𝑚,𝑛 =

𝑁0−3∑︁
𝑚=0

𝑁1−3∑︁
𝑛=0

𝑐𝑘𝑚𝑓𝑙𝑛𝑢̂[0]𝑚,𝑛 +

𝑁0−3∑︁
𝑚=0

𝑁1−1∑︁
𝑛=𝑁1−2

𝑐𝑘𝑚𝑓𝑙𝑛𝑢̂[0]𝑚,𝑛, ∀(𝑘, 𝑙) ∈ 𝑘𝑁0−2 × 𝑙𝑁1−2,

where the first term on the right hand side is square and the second term is known and can be moved to the right hand
side of the linear algebra equation system.

All the parts of the matrices that are to be moved to the right hand side can be extracted from A, G and D as follows

Extract the boundary matrices
bc_mats = extract_bc_matrices([A, G, D])

These matrices are applied to the solution below (see BlockMatrix BM). Furthermore, this leaves us with square
submatrices (A, G, D), which make up a symmetric block matrix

𝑀 =

⎡⎣𝐴[0] +𝐴[1] 0 𝐺[0]
0 𝐴[2] +𝐴[3] 𝐺[1]

𝐷[0] 𝐷[1] 0

⎤⎦ (7.156)

76 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

This matrix, and the matrix responsible for the boundary degrees of freedom, can be assembled from the pieces we
already have as

M = BlockMatrix(A+G+D)
BM = BlockMatrix(bc_mats)

We now have all the matrices we need in order to solve the Navier Stokes equations. However, we also need some
work arrays for iterations and we need to assemble the constant boundary contribution to the right hand side

Create Function to hold solution. Use set_boundary_dofs to fix the degrees
of freedom in uh_hat that determines the boundary conditions.
uh_hat = Function(VQ).set_boundary_dofs()
ui_hat = uh_hat[0]

New solution (iterative)
uh_new = Function(VQ).set_boundary_dofs()
ui_new = uh_new[0]

Compute the constant contribution to rhs due to nonhomogeneous boundary conditions
bh_hat0 = Function(VQ)
bh_hat0 = BM.matvec(-uh_hat, bh_hat0) # Negative because moved to right hand side
bi_hat0 = bh_hat0[0]

Note that bh_hat0 now contains the part of the right hand side that is due to the non-symmetric part of assembled
matrices. The appended set_boundary_dofs() ensures the known boundary values of the solution are fixed for
ui_hat and ui_new.

The nonlinear right hand side also requires some additional attention. Nonlinear terms are usually computed in physi-
cal space before transforming to spectral. For this we need to evaluate the velocity vector on the quadrature mesh. We
also need a rank 2 Array to hold the outer product 𝑢𝑢. The required arrays and spaces are created as

bh_hat = Function(VQ)

Create arrays to hold velocity vector solution
ui = Array(W1)

Create work arrays for nonlinear part
QT = MixedTensorProductSpace([W1, W0]) # for uiuj
uiuj = Array(QT)
uiuj_hat = Function(QT)

The right hand side 𝐿((𝑣, 𝑞);𝑢𝑘); is computed in its own function compute_rhs as

def compute_rhs(ui_hat, bh_hat):
global ui, uiuj, uiuj_hat, V1, bh_hat0
bh_hat.fill(0)
ui = W1.backward(ui_hat, ui)
uiuj = outer(ui, ui, uiuj)
uiuj_hat = uiuj.forward(uiuj_hat)
bi_hat = bh_hat[0]
#bi_hat = inner(v, div(uiuj_hat), output_array=bi_hat)
bi_hat = inner(grad(v), -uiuj_hat, output_array=bi_hat)
bh_hat += bh_hat0
return bh_hat

Here outer() is a shenfun function that computes the outer product of two vectors and returns the product in a rank
two array (here uiuj). With uiuj forward transformed to uiuj_hat we can assemble the linear form either as
inner(v, div(uiuj_hat) or inner(grad(v), -uiuj_hat). Also notice that the constant contribution

7.7. Demo - Lid driven cavity 77

Shenfun Documentation, Release 2.2.2

from the inhomogeneous boundary condition, bh_hat0, is added to the right hand side vector.

Now all that remains is to guess an initial solution and solve iteratively until convergence. For initial solution we
simply set the velocity and pressure to zero and solve the Stokes equations:

from scipy.sparse.linalg import splu
uh_hat, Ai = M.solve(bh_hat0, u=uh_hat, constraints=((2, 0, 0),), return_system=True)
→˓# Constraint for component 2 of mixed space
Alu = splu(Ai)
uh_new[:] = uh_hat

Note that the BlockMatrix given by M has a solve method that sets up a sparse coefficient matrix Ai of size
R3(𝑁0−2)(𝑁1−2)×3(𝑁0−2)(𝑁1−2), and then solves using scipy.sparse.linalg.spsolve. The matrix Ai is then pre-factored
for reuse with splu. Also note that the constraints=((2, 0, 0),) keyword argument ensures that the pressure
integrates to zero, i.e.,

∫︀
Ω
𝑝𝑑𝑥𝑑𝑦 = 0. Here the number 2 tells us that block component 2 in the mixed space (the

pressure) should be integrated, dof 0 should be fixed, and it should be fixed to 0.

With an initial solution from the Stokes equations we are ready to start iterating. However, for convergence it is
necessary to add some underrelaxation 𝛼, and update the solution each time step as

𝑢̂𝑘+1 = 𝛼𝑢̂* + (1 − 𝛼)𝑢̂𝑘,

𝑝𝑘+1 = 𝛼𝑝* + (1 − 𝛼)𝑝𝑘,

where 𝑢̂* and 𝑝* are the newly computed velocity and pressure returned from M.solve. Without underrelaxation the
solution will quickly blow up. The iteration loop goes as follows

converged = False
count = 0
alfa = 0.5
while not converged:

count += 1
bh_hat = compute_rhs(ui_hat, bh_hat)
uh_new = M.solve(bh_hat, u=uh_new, constraints=((2, 0, 0),), Alu=Alu) #

→˓Constraint for component 2 of mixed space
error = np.linalg.norm(ui_hat-ui_new)
uh_hat[:] = alfa*uh_new + (1-alfa)*uh_hat
converged = abs(error) < 1e-10 or count >= 10000
print('Iteration %d Error %2.4e' %(count, error))

up = uh_hat.backward()
u, p = up

X = V0.local_mesh(True)
plt.figure()
plt.quiver(X[0], X[1], u[0], u[1])

The last three lines plots the velocity vectors that are shown in Figure Velocity vectors for Re=100. The solution is
apparently nice and smooth, but hidden underneath are Gibbs oscillations from the corner discontinuities. This is
painfully obvious when switching from Legendre to Chebyshev polynomials. With Chebyshev the same plot looks
like Figure Velocity vectors for Re=100 using Chebyshev. However, choosing instead the regularized lid, the solutions
will be nice and smooth, both for Legendre and Chebyshev polynomials.

78 Chapter 7. Demos

http://scipy.github.io/devdocs/generated/scipy.sparse.linalg.spsolve.html#scipy.sparse.linalg.spsolve
http://scipy.github.io/devdocs/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu

Shenfun Documentation, Release 2.2.2

Fig. 7: Velocity vectors for Re=100 using Chebyshev

7.7. Demo - Lid driven cavity 79

Shenfun Documentation, Release 2.2.2

7.7.5 Complete solver

A complete solver can be found in demo NavierStokesDrivenCavity.py.

7.8 Demo - Rayleigh Benard

Authors Mikael Mortensen (mikaem at math.uio.no)

Date Jun 7, 2020

Summary. Rayleigh-Benard convection arise due to temperature gradients in a fluid. The governing equations are
Navier-Stokes coupled (through buoyancy) with an additional temperature equation derived from the first law of ther-
modynamics, using a linear correlation between density and temperature.

This is a demonstration of how the Python module shenfun can be used to solve for these Rayleigh-Benard cells in a
2D channel with two walls of different temperature in one direction, and periodicity in the other direction. The solver
described runs with MPI without any further considerations required from the user. Note that there is a more physically
realistic 3D solver implemented within the spectralDNS project. To allow for some simple optimizations, the solver
described in this demo has been implemented in a class in the RayleighBenardRk3.py module in the demo folder of
shenfun. Below are two example solutions, where the first (movie) has been run at a very high Rayleigh number (Ra),
and the lower image with a low Ra (laminar).

Fig. 8: Temperature fluctuations in the Rayleigh Benard flow. The top and bottom walls are kept at different temper-
atures and this sets up the Rayleigh-Benard convection. The simulation is run at Ra =100,000, Pr =0.7 with 100 and
256 quadrature points in x and y-directions, respectively

7.8.1 Model problem

The governing equations solved in domain Ω = [−1, 1] × [0, 2𝜋] are

𝜕u

𝜕𝑡
+ (u · ∇)u = −∇𝑝+

√︂
𝑃𝑟

𝑅𝑎
∇2u + 𝑇 i, (7.157)

𝜕𝑇

𝜕𝑡
+ u · ∇𝑇 =

1√
𝑅𝑎𝑃𝑟

∇2𝑇, (7.158)

∇ · u = 0, (7.159)

80 Chapter 7. Demos

https://github.com/spectralDNS/shenfun/blob/master/demo/NavierStokesDrivenCavity.py
https://github.com/spectralDNS/shenfun
https://github.com/spectralDNS/spectralDNS/blob/master/spectralDNS/solvers/KMMRK3_RB.py
https://github.com/spectralDNS/shenfun/blob/master/demo/RayleighBenardRK3.py

Shenfun Documentation, Release 2.2.2

Fig. 9: Convection cells for a laminar flow. The simulation is run at Ra =100, Pr =0.7 with 40 and 128 quadrature
points in x and y-directions, respectively

where u(𝑥, 𝑦, 𝑡)(= 𝑢i + 𝑣j) is the velocity vector, 𝑝(𝑥, 𝑦, 𝑡) is pressure, 𝑇 (𝑥, 𝑦, 𝑡) is the temperature, and i and j are
the unity vectors for the 𝑥 and 𝑦-directions, respectively.

The equations are complemented with boundary conditions u(±1, 𝑦, 𝑡) = (0, 0),u(𝑥, 2𝜋, 𝑡) = u(𝑥, 0, 𝑡), 𝑇 (1, 𝑦, 𝑡) =
1, 𝑇 (−1, 𝑦, 𝑡) = 0, 𝑇 (𝑥, 2𝜋, 𝑡) = 𝑇 (𝑥, 0, 𝑡). Note that these equations have been non-dimensionalized according to
[PSS18], using dimensionless Rayleigh number 𝑅𝑎 = 𝑔𝛼∆𝑇ℎ3/(𝜈𝜅) and Prandtl number 𝑃𝑟 = 𝜈/𝜅. Here 𝑔i is
the vector accelleration of gravity, ∆𝑇 is the temperature difference between the top and bottom walls, ℎ is the hight
of the channel in 𝑥-direction, 𝜈 is the dynamic viscosity coefficient, 𝜅 is the heat transfer coefficient and 𝛼 is the
thermal expansion coefficient. Note that the governing equations have been non-dimensionalized using the free-fall
velocityscale 𝑈 =

√
𝑔𝛼∆𝑇ℎ. See [PSS18] for more details.

The governing equations contain a non-trivial coupling between velocity, pressure and temperature. This coupling can
be simplified by eliminating the pressure from the equation for the wall-normal velocity component 𝑢. We accomplish
this by taking the Laplace of the momentum equation in wall normal direction, using the pressure from the divergence
of the momentum equation ∇2𝑝 = −∇ ·H + 𝜕𝑇/𝜕𝑥, where H = (𝐻𝑥, 𝐻𝑦) = (u · ∇)u

𝜕∇2𝑢

𝜕𝑡
=
𝜕2𝐻𝑦

𝜕𝑥𝜕𝑦
− 𝜕2𝐻𝑥

𝜕𝑦𝜕𝑦
+

√︂
𝑃𝑟

𝑅𝑎
∇4𝑢+

𝜕2𝑇

𝜕𝑦2
. (7.160)

This equation is solved with 𝑢(±1) = 𝜕𝑢/𝜕𝑥(±1) = 0, where the latter follows from the divergence constraint. In
summary, we now seem to have the following equations to solve:

𝜕∇2𝑢

𝜕𝑡
=
𝜕2𝐻𝑦

𝜕𝑥𝜕𝑦
− 𝜕2𝐻𝑥

𝜕𝑦𝜕𝑦
+

√︂
𝑃𝑟

𝑅𝑎
∇4𝑢+

𝜕2𝑇

𝜕𝑦2
, (7.161)

𝜕𝑣

𝜕𝑡
+𝐻𝑦 = −𝜕𝑝

𝜕𝑦
+

√︂
𝑃𝑟

𝑅𝑎
∇2𝑣, (7.162)

𝜕𝑇

𝜕𝑡
+ u · ∇𝑇 =

1√
𝑅𝑎𝑃𝑟

∇2𝑇, (7.163)

∇ · u = 0. (7.164)

However, we note that Eqs. (7.161) and (7.163) and (7.164) do not depend on pressure, and, apparently, on each
time step we can solve (7.161) for 𝑢, then (7.164) for 𝑣 and finally (7.163) for 𝑇 . So what do we need (7.162) for?
It appears to have become redundant from the elimination of the pressure from Eq. (7.161). It turns out that this is
actually almost completely true, but (7.161), (7.163) and (7.164) can only provide closure for all but one of the Fourier

7.8. Demo - Rayleigh Benard 81

Shenfun Documentation, Release 2.2.2

coefficients. To see this it is necessary to introduce some discretization and basis functions that will be used to solve
the problem. To this end we use 𝑃𝑁 , which is the set of all real polynomials of degree less than or equal to N and
introduce the following finite-dimensional approximation spaces

𝑉 𝐵
𝑁 (𝑥) = {𝑣 ∈ 𝑃𝑁 |𝑣(±1) = 𝑣(±1) = 0}, (7.165)

𝑉 𝐷
𝑁 (𝑥) = {𝑣 ∈ 𝑃𝑁 |𝑣(±1) = 0}, (7.166)

𝑉 𝑇
𝑁 (𝑥) = {𝑣 ∈ 𝑃𝑁 |𝑣(−1) = 0, 𝑣(1) = 1}, (7.167)

𝑉𝑊
𝑁 (𝑥) = {𝑣 ∈ 𝑃𝑁}, (7.168)

𝑉 𝐹
𝑀 (𝑦) = {exp(𝚤𝑙𝑦)|𝑙 ∈ [−𝑀/2,−𝑀/2 + 1, . . .𝑀/2 − 1]}. (7.169)

Here dim(𝑉 𝐵
𝑁) = 𝑁 − 4, dim(𝑉 𝐷

𝑁) = dim(𝑉𝑊
𝑁) = 𝑁 − 2, dim(𝑉 𝑇

𝑁) = 𝑁 and dim(𝑉 𝐹
𝑀) = 𝑀 . We note that

𝑉 𝐵
𝑁 , 𝑉 𝐷

𝑁 , 𝑉𝑊
𝑁 and 𝑉 𝑇

𝑁 can be used to approximate 𝑢, 𝑣, 𝑇 and 𝑝, respectively, in the 𝑥-direction. Also note that for
𝑉 𝐹
𝑀 it is assumed that 𝑀 is an even number.

We can now choose basis functions for the spaces, using Shen’s composite bases for either Legendre or Chebyshev
polynomials. For the Fourier space the basis functions are already given. We leave the actual choice of basis as
an implementation option for later. For now we use 𝜑𝐵(𝑥), 𝜑𝐷(𝑥), 𝜑𝑊 and 𝜑𝑇 (𝑥) as common notation for basis
functions in spaces 𝑉 𝐵

𝑁 , 𝑉 𝐷
𝑁 , 𝑉𝑊

𝑁 and 𝑉 𝑇
𝑁 , respectively.

To get the required approximation spaces for the entire domain we use tensor products of the one-dimensional spaces
in (7.165)-(7.169)

𝑊𝐵𝐹 = 𝑉 𝐵
𝑁 ⊗ 𝑉 𝐹

𝑀 , (7.170)

𝑊𝐷𝐹 = 𝑉 𝐷
𝑁 ⊗ 𝑉 𝐹

𝑀 , (7.171)

𝑊𝑇𝐹 = 𝑉 𝑇
𝑁 ⊗ 𝑉 𝐹

𝑀 , (7.172)

𝑊𝑊𝐹 = 𝑉𝑊
𝑁 ⊗ 𝑉 𝐹

𝑀 . (7.173)

Space 𝑊𝐵𝐹 has 2D tensor product basis functions 𝜑𝐵𝑘 (𝑥) exp(𝚤𝑙𝑦) and similar for the others. All in all we get the
following approximations for the unknowns

𝑢𝑁 (𝑥, 𝑦, 𝑡) =
∑︁
𝑘∈𝑘𝐵

∑︁
𝑙∈𝑙

𝑢̂𝑘𝑙(𝑡)𝜑
𝐵
𝑘 (𝑥) exp(𝚤𝑙𝑦), (7.174)

𝑣𝑁 (𝑥, 𝑦, 𝑡) =
∑︁
𝑘∈𝑘𝐷

∑︁
𝑙∈𝑙

𝑣𝑘𝑙(𝑡)𝜑
𝐷
𝑘 (𝑥) exp(𝚤𝑙𝑦), (7.175)

𝑝𝑁 (𝑥, 𝑦, 𝑡) =
∑︁

𝑘∈𝑘𝑊

∑︁
𝑙∈𝑙

𝑝𝑘𝑙(𝑡)𝜑
𝑊
𝑘 (𝑥) exp(𝚤𝑙𝑦), (7.176)

𝑇𝑁 (𝑥, 𝑦, 𝑡) =
∑︁
𝑘∈𝑘𝑇

∑︁
𝑙∈𝑙

𝑇𝑘𝑙(𝑡)𝜑
𝑇
𝑘 (𝑥) exp(𝚤𝑙𝑦), (7.177)

where 𝑘𝑥 = {0, 1, . . . dim(𝑉 𝑥
𝑁) − 1}, for𝑥 ∈ (𝐵,𝐷,𝑊, 𝑇) and 𝑙 = {−𝑀/2,−𝑀/2 + 1, . . . ,𝑀/2 − 1}. Note that

since the problem is defined in real space we will have Hermitian symmetry. This means that 𝑢̂𝑘,𝑙 = 𝑢̂𝑘,−𝑙, with an
overbar being a complex conjugate, and similar for 𝑣𝑘𝑙, 𝑝𝑘𝑙 and 𝑇𝑘𝑙. For this reason we can get away with solving
for only the positive 𝑙’s, as long as we remember that the sum in the end goes over both positive and negative 𝑙′𝑠.
This is actually automatically taken care of by the FFT provider and is not much of an additional complexity in the
implementation. So from now on 𝑙 = {0, 1, . . . ,𝑀/2}.

We can now take a look at why Eq. (7.162) is needed. If we first solve (7.161) for 𝑢̂𝑘𝑙(𝑡), (𝑘, 𝑙) ∈ 𝑘𝐵 × 𝑙, then we can
use (7.164) to solve for 𝑣𝑘𝑙(𝑡). But here there is a problem. We can see this by creating the variational form required

82 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

to solve (7.164) by the spectral Galerkin method. To this end make 𝑣 = 𝑣𝑁 in (7.164) a trial function, use 𝑢 = 𝑢𝑁 a
known function and take the weighted inner product over the domain using test function 𝑞 ∈𝑊𝐷𝐹⟨

𝜕𝑢𝑁
𝜕𝑥

+
𝜕𝑣𝑁
𝜕𝑦

, 𝑞

⟩
𝑤

= 0. (7.178)

Here we are using the inner product notation

⟨𝑎, 𝑏⟩𝑤 =

∫︁ 1

−1

∫︁ 2𝜋

0

𝑎𝑏𝑑𝑥𝑤𝑑𝑦𝑤

⎛⎝≈
∑︁
𝑖

∑︁
𝑗

𝑎(𝑥𝑖, 𝑦𝑗)𝑏(𝑥𝑖, 𝑦𝑗)𝑤(𝑥𝑖)𝑤(𝑦𝑗)

⎞⎠ , (7.179)

where the exact form of the weighted scalar product depends on the chosen basis; Legendre has 𝑑𝑥𝑤 = 𝑑𝑥, Chebyshev
𝑑𝑥𝑤 = 𝑑𝑥/

√
1 − 𝑥2 and Fourier 𝑑𝑦𝑤 = 𝑑𝑦/2/𝜋. The bases also have associated quadrature weights {𝑤(𝑥𝑖)}𝑁−1

𝑖=0

and {𝑤(𝑦𝑗)}𝑀−1
𝑗=0 that are used to approximate the integrals.

Inserting now for the known 𝑢𝑁 , the unknown 𝑣𝑁 , and 𝑞 = 𝜑𝐷𝑚(𝑥) exp(𝚤𝑛𝑦) the continuity equation becomes∫︁ 1

−1

∫︁ 2𝜋

0

𝜕

𝜕𝑥

(︃∑︁
𝑘∈𝑘𝐵

∑︁
𝑙∈𝑙

𝑢̂𝑘𝑙(𝑡)𝜑
𝐵
𝑘 (𝑥) exp(𝚤𝑙𝑦)

)︃
𝜑𝐷𝑚(𝑥) exp(−𝚤𝑛𝑦)𝑑𝑥𝑤𝑑𝑦𝑤+

∫︁ 1

−1

∫︁ 2𝜋

0

𝜕

𝜕𝑦

(︃∑︁
𝑘∈𝑘𝐷

∑︁
𝑙∈𝑙

𝑣𝑘𝑙(𝑡)𝜑
𝐷
𝑘 (𝑥) exp(𝚤𝑙𝑦)

)︃
𝜑𝐷𝑚(𝑥) exp(−𝚤𝑛𝑦)𝑑𝑥𝑤𝑑𝑦𝑤 = 0.

(7.180)

The 𝑥 and 𝑦 domains are separable, so we can rewrite as

∑︁
𝑘∈𝑘𝐵

∑︁
𝑙∈𝑙

∫︁ 1

−1

𝜕𝜑𝐵𝑘 (𝑥)

𝜕𝑥
𝜑𝐷𝑚(𝑥)𝑑𝑥𝑤

∫︁ 2𝜋

0

exp(𝚤𝑙𝑦) exp(−𝚤𝑛𝑦)𝑑𝑦𝑤𝑢̂𝑘𝑙+

∑︁
𝑘∈𝑘𝐷

∑︁
𝑙∈𝑙

∫︁ 1

−1

𝜑𝐷𝑘 (𝑥)𝜑𝐷𝑚(𝑥)𝑑𝑥𝑤

∫︁ 2𝜋

0

𝜕 exp(𝚤𝑙𝑦)

𝜕𝑦
exp(−𝚤𝑛𝑦)𝑑𝑦𝑤𝑣𝑘𝑙 = 0.

(7.181)

Now perform some exact manipulations in the Fourier direction and introduce the 1D inner product notation for the
𝑥-direction

(𝑎, 𝑏)𝑤 =

∫︁ 1

−1

𝑎(𝑥)𝑏(𝑥)𝑑𝑥𝑤

⎛⎝≈
𝑁−1∑︁
𝑗=0

𝑎(𝑥𝑗)𝑏(𝑥𝑗)𝑤(𝑥𝑗)

⎞⎠ . (7.182)

By also simplifying the notation using summation of repeated indices, we get the following equation

𝛿𝑙𝑛

(︂
𝜕𝜑𝐵𝑘
𝜕𝑥

, 𝜑𝐷𝑚

)︂
𝑤

𝑢̂𝑘𝑙 + 𝚤𝑙𝛿𝑙𝑛
(︀
𝜑𝐷𝑘 , 𝜑

𝐷
𝑚

)︀
𝑤
𝑣𝑘𝑙 = 0. (7.183)

Now 𝑙 must equal 𝑛 and we can simplify some more(︂
𝜕𝜑𝐵𝑘
𝜕𝑥

, 𝜑𝐷𝑚

)︂
𝑤

𝑢̂𝑘𝑙 + 𝚤𝑙
(︀
𝜑𝐷𝑘 , 𝜑

𝐷
𝑚

)︀
𝑤
𝑣𝑘𝑙 = 0. (7.184)

We see that this equation can be solved for 𝑣𝑘𝑙 for (𝑘, 𝑙) ∈ 𝑘𝐷 × [1, 2, . . . ,𝑀/2], but try with 𝑙 = 0 and you hit
division by zero, which obviously is not allowed. And this is the reason why Eq. (7.162) is still needed, to solve for
𝑣𝑘,0! Fortunately, since exp(𝚤0𝑦) = 1, the pressure derivative 𝜕𝑝

𝜕𝑦 = 0, and as such the pressure is still not required.
When used only for Fourier coefficient 0, Eq. (7.162) becomes

𝜕𝑣

𝜕𝑡
+𝑁𝑦 =

√︂
𝑃𝑟

𝑅𝑎
∇2𝑣. (7.185)

7.8. Demo - Rayleigh Benard 83

Shenfun Documentation, Release 2.2.2

There is still one more revelation to be made from Eq. (7.184). When 𝑙 = 0 we get(︂
𝜕𝜑𝐵𝑘
𝜕𝑥

, 𝜑𝐷𝑚

)︂
𝑤

𝑢̂𝑘,0 = 0, (7.186)

and the only way to satisfy this is if 𝑢̂𝑘,0 = 0 for 𝑘 ∈ 𝑘𝐵 . Bottom line is that we only need to solve Eq. (7.161) for
𝑙 ∈ 𝑙/{0}, whereas we can use directly 𝑢̂𝑘,0 = 0 for 𝑘 ∈ 𝑘𝐵 .

To sum up, with the solution known at 𝑡 = 𝑡− ∆𝑡, we solve

Equation For unknown With indices
(7.161) 𝑢̂𝑘𝑙(𝑡) (𝑘, 𝑙) ∈ 𝑘𝐵 × 𝑙/{0}
(7.164) 𝑣𝑘𝑙(𝑡) (𝑘, 𝑙) ∈ 𝑘𝐷 × 𝑙/{0}
(7.185) 𝑣𝑘𝑙(𝑡) (𝑘, 𝑙) ∈ 𝑘𝐷 × {0}
(7.163) 𝑇𝑘𝑙(𝑡) (𝑘, 𝑙) ∈ 𝑘𝑇 × 𝑙

7.8.2 Temporal discretization

The governing equations are integrated in time using a semi-implicit third order Runge Kutta method. This method
applies to any generic equation

𝜕𝜓

𝜕𝑡
= 𝒩 + ℒ𝜓, (7.187)

where 𝒩 and ℒ represents the nonlinear and linear contributions, respectively. With time discretized as 𝑡𝑛 = 𝑛∆𝑡, 𝑛 =
0, 1, 2, ..., the Runge Kutta method also subdivides each timestep into stages 𝑡𝑘𝑛 = 𝑡𝑛 + 𝑐𝑘∆𝑡, 𝑘 = (0, 1, .., 𝑁𝑠 − 1),
where 𝑁𝑠 is the number of stages. The third order Runge Kutta method implemented here uses three stages. On one
timestep the generic equation (7.187) is then integrated from stage 𝑘 to 𝑘 + 1 according to

𝜓𝑘+1 = 𝜓𝑘 + 𝑎𝑘𝒩 𝑘 + 𝑏𝑘𝒩 𝑘−1 +
𝑎𝑘 + 𝑏𝑘

2
ℒ(𝜓𝑘+1 + 𝜓𝑘), (7.188)

which should be rearranged with the unknowns on the left hand side and the knowns on the right hand side

(︀
1 − 𝑎𝑘 + 𝑏𝑘

2
ℒ
)︀
𝜓𝑘+1 =

(︀
1 +

𝑎𝑘 + 𝑏𝑘
2

ℒ
)︀
𝜓𝑘 + 𝑎𝑘𝒩 𝑘 + 𝑏𝑘𝒩 𝑘−1. (7.189)

For the three-stage third order Runge Kutta method the constants are given as

𝑎𝑛/∆𝑡 𝑏𝑛/∆𝑡 𝑐𝑛/∆𝑡
8/15 0 0
5/12 17/60 8/15
3/4 5/12 2/3

For the spectral Galerkin method used by shenfun the governing equation is first put in a weak variational form.
This will change the appearence of Eq. (7.189) slightly. If 𝜑 is a test function, 𝜓𝑘+1 the trial function, and 𝜓𝑘 a known
function, then the variational form of (7.189) is obtained by multiplying (7.189) by 𝜑 and integrating (with weights)
over the domain⟨

(1 − 𝑎𝑘 + 𝑏𝑘
2

ℒ)𝜓𝑘+1, 𝜑
⟩
𝑤

=
⟨

(1 +
𝑎𝑘 + 𝑏𝑘

2
ℒ)𝜓𝑘, 𝜑

⟩
𝑤

+
⟨
𝑎𝑘𝒩 𝑘 + 𝑏𝑘𝒩 𝑘−1, 𝜑

⟩
𝑤
. (7.190)

Equation (7.190) is the variational form implemented by shenfun for the time dependent equations.

84 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

7.8.3 Shenfun implementation

To get started we need instances of the approximation spaces discussed in Eqs. (7.165) - (7.173). When the spaces
are created we also need to specify the family and the dimension of each space. Here we simply choose Chebyshev
and Fourier with 100 and 256 quadrature points in 𝑥 and 𝑦-directions, respectively. We could replace ‘Chebyshev’ by
‘Legendre’, but the former is known to be faster due to the existence of fast transforms.

from shenfun import *

N, M = 100, 256
family = 'Chebyshev'
VB = Basis(N, family, bc='Biharmonic')
VD = Basis(N, family, bc=(0, 0))
VW = Basis(N, family)
VT = Basis(N, family, bc=(0, 1))
VF = Basis(M, 'F', dtype='d')

And then we create tensor product spaces by combining these bases (like in Eqs. (7.170)-(7.173)).

W_BF = TensorProductSpace(comm, (VB, VF)) # Wall-normal velocity
W_DF = TensorProductSpace(comm, (VD, VF)) # Streamwise velocity
W_WF = TensorProductSpace(comm, (VW, VF)) # No bc
W_TF = TensorProductSpace(comm, (WT, VF)) # Temperature
BD = MixedTensorProductSpace([W_BF, W_DF]) # Velocity vector
DD = MixedTensorProductSpace([W_DF, W_DF]) # Convection vector

Here the last two lines create mixed tensor product spaces by the Cartesian products BD = W_BF× W_DF and DD =
W_DF × W_DF. These mixed space will be used to hold the velocity and convection vectors, but we will not solve the
equations in a coupled manner and continue in the segregated approach outlined above.

We also need containers for the computed solutions. These are created as

u_ = Function(BD) # Velocity vector, two components
u_1 = Function(BD) # Velocity vector, previous step
T_ = Function(W_TF) # Temperature
T_1 = Function(W_TF) # Temperature, previous step
H_ = Function(DD) # Convection vector
H_1 = Function(DD) # Convection vector previous stage

Need a container for the computed right hand side vector
rhs_u = Function(DD).v
rhs_T = Function(DD).v

In the final solver we will also use bases for dealiasing the nonlinear term, but we do not add that level of complexity
here.

Wall-normal velocity equation

We implement Eq. (7.161) using the three-stage Runge Kutta equation (7.190). To this end we first need to declare
some test- and trial functions, as well as some model constants

u = TrialFunction(W_BF)
v = TestFunction(W_BF)
a = (8./15., 5./12., 3./4.)
b = (0.0, -17./60., -5./12.)
c = (0., 8./15., 2./3., 1)

(continues on next page)

7.8. Demo - Rayleigh Benard 85

Shenfun Documentation, Release 2.2.2

(continued from previous page)

Specify viscosity and time step size using dimensionless Ra and Pr
Ra = 10000
Pr = 0.7
nu = np.sqrt(Pr/Ra)
kappa = 1./np.sqrt(Pr*Ra)
dt = 0.1

Get one solver for each stage of the RK3
solver = []
for rk in range(3):

mats = inner(div(grad(u)) - ((a[rk]+b[rk])*nu*dt/2.)*div(grad(div(grad(u)))), v)
solver.append(chebyshev.la.Biharmonic(*mats))

Notice the one-to-one resemblance with the left hand side of (7.190), where 𝜓𝑘+1 now has been replaced by ∇2𝑢
(or div(grad(u))) from Eq. (7.161). For each stage we assemble a list of tensor product matrices mats, and in
chebyshev.la there is available a very fast direct solver for exactly this type of (biharmonic) matrices. The solver
is created with chebyshev.la.Biharmonic(*mats), and here the necessary LU-decomposition is carried out
for later use and reuse on each time step.

The right hand side depends on the solution on the previous stage, and the convection on two previous stages. The
linear part (first term on right hand side of (7.189)) can be assembled as

inner(div(grad(u_[0])) + ((a[rk]+b[rk])*nu*dt/2.)*div(grad(div(grad(u_[0])))), v)

The remaining parts 𝜕2𝐻𝑦

𝜕𝑥𝜕𝑦 − 𝜕2𝐻𝑥

𝜕𝑦𝜕𝑦 + 𝜕2𝑇
𝜕𝑦2 end up in the nonlinear 𝒩 . The nonlinear convection term 𝐻 can be

computed in many different ways. Here we will make use of the identity (𝑢 · ∇)𝑢 = −𝑢 × (∇ × 𝑢) + 0.5∇𝑢 · 𝑢,
where 0.5∇𝑢 · 𝑢 can be added to the eliminated pressure and as such be neglected. Compute 𝐻 = −𝑢 × (∇ × 𝑢)
by first evaluating the velocity and the curl in real space. The curl is obtained by projection of ∇ × 𝑢 to the no-
boundary-condition space W_TF, followed by a backward transform to real space. The velocity is simply transformed
backwards.

Note: If dealiasing is required, it should be used here to create padded backwards transforms of the curl and the
velocity, before computing the nonlinear term in real space. The nonlinear product should then be forward transformed
with truncation. To get a space for dealiasing, simply use, e.g., W_BF.get_dealiased().

Get a mask for setting Nyquist frequency to zero
mask = W_DF.get_mask_nyquist()

def compute_convection(u, H):
curl = project(Dx(u[1], 0, 1) - Dx(u[0], 1, 1), W_TF).backward()
ub = u.backward()
H[0] = W_DF.forward(-curl*ub[1])
H[1] = W_DF.forward(curl*ub[0])
H.mask_nyquist(mask)
return H

Note that the convection has a homogeneous Dirichlet boundary condition in the non-periodic direction. With convec-
tion computed we can assemble 𝒩 and all of the right hand side, using the function compute_rhs_u

def compute_rhs_u(u, T, H, rhs, rk):
v = TestFunction(W_BF)
H = compute_convection(u, H)
rhs[1] = 0

(continues on next page)

86 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

(continued from previous page)

rhs[1] += inner(v, div(grad(u[0])) + ((a[rk]+b[rk])*nu*dt/2.
→˓)*div(grad(div(grad(u[0])))))

w0 = inner(v, Dx(Dx(H[1], 0, 1), 1, 1) - Dx(H[0], 1, 2))
w1 = inner(v, Dx(T, 1, 2))
rhs[1] += a[rk]*dt*(w0+w1)
rhs[1] += b[rk]*dt*rhs[0]
rhs[0] = w0+w1
rhs.mask_nyquist(mask)
return rhs

Note that we will only use rhs as a container, so it does not actually matter which space it has here. We’re using .v
to only access the Numpy array view of the Function. Also note that rhs[1] contains the right hand side computed
at stage k, whereas rhs[0] is used to remember the old value of the nonlinear part.

Streamwise velocity

The streamwise velocity is computed using Eq. (7.184) and (7.185). For efficiency we can here preassemble both
matrices seen in (7.184) and reuse them every time the streamwise velocity is being computed. We will also need the
wavenumber 𝑙, here retrived using W_BF.local_wavenumbers(scaled=True). For (7.185) we preassemble
the required Helmholtz solvers, one for each RK stage.

Assemble matrices and solvers for all stages
B_DD = inner(TestFunction(W_DF), TrialFunction(W_DF))
C_DB = inner(TestFunction(W_DF), Dx(TrialFunction(W_BF), 0, 1))
v0 = TestFunction(VD)
u0 = TrialFunction(VD)
solver0 = []
for rk in range(3):

mats0 = inner(v0, 2./(nu*(a[rk]+b[rk])*dt)*u0 - div(grad(u0)))
solver0.append(chebyshev.la.Helmholtz(*mats0))

Allocate work arrays and variables
u00 = Function(VD)
b0 = np.zeros((2,)+u00.shape)
w00 = np.zeros_like(u00)
dudx_hat = Function(W_DF)
K = W_BF.local_wavenumbers(scaled=True)[1]

def compute_v(u, rk):
if comm.Get_rank() == 0:

u00[:] = u_[1, :, 0].real
dudx_hat = C_DB.matvec(u[0], dudx_hat)
with np.errstate(divide='ignore'):

dudx_hat = 1j * dudx_hat / K
u[1] = B_DD.solve(dudx_hat, u=u[1])

Still have to compute for wavenumber = 0
if comm.Get_rank() == 0:

b0[1] = inner(v0, 2./(nu*(a[rk]+b[rj])*dt)*Expr(u00) + div(grad(u00)))
w00 = inner(v0, H_[1, :, 0])
b0[1] -= (2.*a/nu/(a[rk]+b[rk]))*w00
b0[1] -= (2.*b/nu/(a[rk]+b[rk]))*b0[0]
u00 = solver0[rk](u00, b0[1])
u[1, :, 0] = u00
b0[0] = w00

(continues on next page)

7.8. Demo - Rayleigh Benard 87

Shenfun Documentation, Release 2.2.2

(continued from previous page)

return u

Temperature

The temperature equation (7.158) is implemented using a Helmholtz solver. The main difficulty with the temperature
is the non-homogeneous boundary condition that requires special attention. A non-zero Dirichlet boundary condition
is implemented by adding two basis functions to the basis of the function space

𝜑𝐷𝑁−2 = 0.5(1 + 𝑥), (7.191)

𝜑𝐷𝑁−1 = 0.5(1 − 𝑥), (7.192)

with the approximation now becoming

𝑇𝑁 (𝑥, 𝑦, 𝑡) =

𝑁−1∑︁
𝑘=0

∑︁
𝑙∈𝑙

𝑇𝑘𝑙𝜑
𝐷
𝑘 (𝑥) exp(𝚤𝑙𝑦), (7.193)

=

𝑁−3∑︁
𝑘=0

∑︁
𝑙∈𝑙

𝑇𝑘𝑙𝜑
𝐷
𝑘 (𝑥) exp(𝚤𝑙𝑦) +

𝑁−1∑︁
𝑘=𝑁−2

∑︁
𝑙∈𝑙

𝑇𝑘𝑙𝜑
𝐷
𝑘 (𝑥) exp(𝚤𝑙𝑦). (7.194)

The boundary condition requires

𝑇𝑁 (1, 𝑦, 𝑡) =

𝑁−1∑︁
𝑘=𝑁−2

∑︁
𝑙∈𝑙

𝑇𝑘𝑙𝜑
𝐷
𝑘 (1) exp(𝚤𝑙𝑦), (7.195)

=
∑︁
𝑙∈𝑙

𝑇𝑁−2,𝑙 exp(𝚤𝑙𝑦), (7.196)

and

𝑇𝑁 (−1, 𝑦, 𝑡) =

𝑁−1∑︁
𝑘=𝑁−2

∑︁
𝑙∈𝑙

𝑇𝑘𝑙𝜑
𝐷
𝑘 (−1) exp(𝚤𝑙𝑦), (7.197)

=
∑︁
𝑙∈𝑙

𝑇𝑁−1,𝑙 exp(𝚤𝑙𝑦). (7.198)

We find 𝑇𝑁−2,𝑙 and 𝑇𝑁−1,𝑙 using orthogonality. Multiply (7.196) and (7.198) by exp(−𝚤𝑚𝑦) and integrate over the
domain [0, 2𝜋]. We get

𝑇𝑁−2,𝑙 =

∫︁ 2𝜋

0

𝑇𝑁 (1, 𝑦, 𝑡) exp(−𝚤𝑙𝑦)𝑑𝑦, (7.199)

𝑇𝑁−1,𝑙 =

∫︁ 2𝜋

0

𝑇𝑁 (−1, 𝑦, 𝑡) exp(−𝚤𝑙𝑦)𝑑𝑦. (7.200)

Using this approach it is easy to see that any inhomogeneous function 𝑇𝑁 (±1, 𝑦, 𝑡) of 𝑦 and 𝑡 can be used for the
boundary condition, and not just a constant. To implement a non-constant Dirichlet boundary condition, the Basis
function can take any sympy function of (y, t), for exampel by replacing the creation of VT by

import sympy as sp
y, t = sp.symbols('y,t')
f = 0.9+0.1*sp.sin(2*(y))*sp.exp(-t)
VT = Basis(N, family, bc=(0, f))

88 Chapter 7. Demos

Shenfun Documentation, Release 2.2.2

For merely a constant f or a y-dependency, no further action is required. However, a time-dependent approach
requires the boundary values to be updated each time step. To this end there is the function BoundaryValues.
update_bcs_time, used to update the boundary values to the new time. Here we will assume a time-independent
boundary condition, but the final implementation will contain the time-dependent option.

Due to the non-zero boundary conditions there are also a few additional things to be aware of. Assembling the
coefficient matrices will also assemble the matrices for the two boundary test functions. That is, for the 1D mass
matrix with 𝑢 =

∑︀𝑁−1
𝑘=0 𝑇𝑘𝜑

𝐷
𝑘 and 𝑣 = 𝜑𝐷𝑚, we will have

(𝑢, 𝑣)𝑤 =

(︃
𝑁−1∑︁
𝑘=0

𝑇𝑘𝜑
𝐷
𝑘 (𝑥), 𝜑𝐷𝑚

)︃
𝑤

, (7.201)

=

𝑁−3∑︁
𝑘=0

(︀
𝜑𝐷𝑘 (𝑥), 𝜑𝐷𝑚

)︀
𝑤
𝑇𝑘 +

𝑁−1∑︁
𝑘=𝑁−2

(︀
𝜑𝐷𝑘 (𝑥), 𝜑𝐷𝑚

)︀
𝑤
𝑇𝑘, (7.202)

where the first term on the right hand side is the regular mass matrix for a homogeneous boundary condition, whereas
the second term is due to the non-homogeneous. Since 𝑇𝑁−2 and 𝑇𝑁−1 are known, the second term contributes
to the right hand side of a system of equations. All boundary matrices can be extracted from the lists of tensor
product matrices returned by inner. For the temperature equation these boundary matrices are extracted using
extract_bc_matrices below. The regular solver is placed in the solverT list, one for each stage of the RK3
solver.

solverT = []
lhs_mat = []
for rk in range(3):

matsT = inner(q, 2./(kappa*(a[rk]+b[rk])*dt)*p - div(grad(p)))
lhs_mat.append(extract_bc_matrices([matsT]))
solverT.append(chebyshev.la.Helmholtz(*matsT))

The boundary contribution to the right hand side is computed for each stage as

rhs_T = lhs_mat[rk][0].matvec(T_, rhs_T)

The complete right hand side of the temperature equations can be computed as

def compute_rhs_T(u, T, rhs, rk):
q = TestFunction(W_TF)
rhs[1] = inner(q, 2./(kappa*(a[rk]+b[rk])*dt)*Expr(T)+div(grad(T)))
rhs[1] -= lhs_mat[rk][0].matvec(T, w0)
ub = u.backward()
Tb = T.backward()
uT_ = BD.forward(ub*Tb)
w0[:] = 0
w0 = inner(q, div(uT_), output_array=w0)
rhs[1] -= (2.*a/kappa/(a[rk]+b[rk]))*w0
rhs[1] -= (2.*b/kappa/(a[rk]+b[rk]))*rhs[0]
rhs[0] = w0
rhs.mask_nyquist(mask)
return rhs

We now have all the pieces required to solve the Rayleigh Benard problem. It only remains to perform an initialization
and then create a solver loop that integrates the solution forward in time.

initialization
T_b = Array(W_TF)
X = W_TF.local_mesh(True)

(continues on next page)

7.8. Demo - Rayleigh Benard 89

Shenfun Documentation, Release 2.2.2

(continued from previous page)

T_b[:] = 0.5*(1-X[0]) + 0.001*np.random.randn(*T_b.shape)*(1-X[0])*(1+X[0])
T_ = T_b.forward(T_)
T_.mask_nyquist(mask)

def solve(t=0, tstep=0, end_time=1000):
while t < end_time-1e-8:

for rk in range(3):
rhs_u = compute_rhs_u(u_, T_, H_, rhs_u, rk)
u_[0] = solver[rk](u_[0], rhs_u[1])
if comm.Get_rank() == 0:

u_[0, :, 0] = 0
u_ = compute_v(u_, rk)
u_.mask_nyquist(mask)
rhs_T = compute_rhs_T(u_, T_, rhs_T, rk)
T_ = solverT[rk](T_, rhs_T[1])
T_.mask_nyquist(mask)

t += dt
tstep += 1

A complete solver implemented in a solver class can be found in RayleighBenardRk3.py, where some of the terms
discussed in this demo have been optimized some more for speed. Note that in the final solver it is also possible to use
a (𝑦, 𝑡)-dependent boundary condition for the hot wall. And the solver can also be configured to store intermediate
results to an HDF5 format that later can be visualized in, e.g., Paraview. The movie in the beginning of this demo has
been created in Paraview.

90 Chapter 7. Demos

https://github.com/spectralDNS/shenfun/blob/master/demo/RayleighBenardRK3.py

BIBLIOGRAPHY

[PSS18] Ambrish Pandey, Janet D. Scheel, and Jörg Schumacher. Turbulent superstructures in rayleigh-bénard con-
vection. Nature Communications, 9(1):2118, 2018. doi:10.1038/s41467-018-04478-0.

[She94] Jie Shen. Efficient spectral-galerkin method i. direct solvers of second- and fourth-order equations using leg-
endre polynomials. SIAM Journal on Scientific Computing, 15(6):1489–1505, 1994. doi:10.1137/0915089.

[She95] Jie Shen. Efficient spectral-galerkin method ii. direct solvers of second- and fourth-order equations using
chebyshev polynomials. SIAM Journal on Scientific Computing, 16(1):74–87, 1995. doi:10.1137/0916006.

[She97] Jie Shen. Efficient spectral-galerkin methods iii: polar and cylindrical geometries. SIAM Journal on Scientific
Computing, 18(6):1583–1604, 1997. doi:10.1137/S1064827595295301.

[Waz08] Abdul-Majid Wazwaz. New travelling wave solutions to the boussinesq and the klein-gordon
equations. Communications in Nonlinear Science and Numerical Simulation, 13(5):889–901, 2008.
doi:10.1016/j.cnsns.2006.08.005.

91

https://doi.org/10.1038/s41467-018-04478-0
https://doi.org/10.1137/0915089
https://doi.org/10.1137/0916006
https://doi.org/10.1137/S1064827595295301
https://doi.org/10.1016/j.cnsns.2006.08.005

	Introduction
	Spectral Galerkin
	Tensor products
	Tribute

	Getting started
	Basic usage
	Operators
	Multidimensional problems
	Curvilinear coordinates
	Coupled problems
	Integrators
	MPI

	Post processing
	ParaView

	Installation
	Optimization
	Additional dependencies
	Test installation

	How to cite?
	How to contribute?
	Demos
	Demo - 1D Poisson’s equation
	Model problem
	Implementation

	Demo - Cubic nonlinear Klein-Gordon equation
	The nonlinear Klein-Gordon equation
	Implementation

	Demo - 3D Poisson’s equation
	Model problem
	Implementation

	Demo - Helmholtz equation in polar coordinates
	Helmholtz equation
	Implementation in shenfun
	Postprocessing

	Demo - Kuramato-Sivashinsky equation
	The Kuramato-Sivashinsky equation
	Implementation

	Demo - Stokes equations
	Model problem
	Implementation

	Demo - Lid driven cavity
	Navier Stokes equations
	Bases and tensor product spaces
	Mixed variational form
	Implementation of solver
	Complete solver

	Demo - Rayleigh Benard
	Model problem
	Temporal discretization
	Shenfun implementation

	Bibliography

